Densities, submeasures and partitions of groups
In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition \(G=A_1\cup\dots\cup A_n\) of a group \(G\) there is a cell \(A_i\) of the partition such that \(G=FA_iA_i^{-1}\) for some set \(F\subset G\) of cardinality \(|F|\le n\)? In this paper we...
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2018
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1031 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Summary: | In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition \(G=A_1\cup\dots\cup A_n\) of a group \(G\) there is a cell \(A_i\) of the partition such that \(G=FA_iA_i^{-1}\) for some set \(F\subset G\) of cardinality \(|F|\le n\)? In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities and submeasures on groups. In particular, we show that for any partition \(G=A_1\cup\dots\cup A_n\) of a group \(G\) there are cells \(A_i\), \(A_j\) of the partition such that \(G=FA_jA_j^{-1}\) for some finite set \(F\subset G\) of cardinality \(|F|\le \max_{0<k\le n}\sum_{p=0}^{n-k}k^p\le n!\); \(G=F\cdot\bigcup_{x\in E}xA_iA_i^{-1}x^{-1}\) for some finite sets \(F,E\subset G\) with \(|F|\le n\); \(G=FA_iA_i^{-1}A_i\) for some finite set \(F\subset G\) of cardinality \(|F|\le n\); the set \((A_iA_i^{-1})^{4^{n-1}}\) is a subgroup of index \(\le n\) in \(G\). The last three statements are derived from the corresponding density results. |
|---|