Densities, submeasures and partitions of groups

In 1995 in Kourovka notebook the second author asked the following problem:  is it true that for each partition \(G=A_1\cup\dots\cup A_n\) of a group \(G\) there is a cell \(A_i\) of the partition such that \(G=FA_iA_i^{-1}\) for some set \(F\subset G\) of cardinality \(|F|\le n\)?  In this paper we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Banakh, Taras, Protasov, Igor, Slobodianiuk, Sergiy
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1031
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1031
record_format ojs
spelling admjournalluguniveduua-article-10312018-04-26T02:11:00Z Densities, submeasures and partitions of groups Banakh, Taras Protasov, Igor Slobodianiuk, Sergiy partition of a group; density; submeasure; amenable group 05E15, 05D10, 28C10 In 1995 in Kourovka notebook the second author asked the following problem:  is it true that for each partition \(G=A_1\cup\dots\cup A_n\) of a group \(G\) there is a cell \(A_i\) of the partition such that \(G=FA_iA_i^{-1}\) for some set \(F\subset G\) of cardinality \(|F|\le n\)?  In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities  and submeasures on groups. In particular, we show that for any partition \(G=A_1\cup\dots\cup A_n\)  of a group \(G\) there are cells \(A_i\), \(A_j\) of the partition such that \(G=FA_jA_j^{-1}\) for some finite set \(F\subset G\) of cardinality \(|F|\le \max_{0<k\le n}\sum_{p=0}^{n-k}k^p\le n!\);   \(G=F\cdot\bigcup_{x\in E}xA_iA_i^{-1}x^{-1}\) for some finite sets \(F,E\subset G\) with \(|F|\le n\);   \(G=FA_iA_i^{-1}A_i\) for some finite set \(F\subset G\) of cardinality \(|F|\le n\);   the set \((A_iA_i^{-1})^{4^{n-1}}\) is a subgroup of index \(\le n\) in \(G\). The last three statements are derived from the corresponding density results. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1031 Algebra and Discrete Mathematics; Vol 17, No 2 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1031/554 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-26T02:11:00Z
collection OJS
language English
topic partition of a group
density
submeasure
amenable group
05E15
05D10
28C10
spellingShingle partition of a group
density
submeasure
amenable group
05E15
05D10
28C10
Banakh, Taras
Protasov, Igor
Slobodianiuk, Sergiy
Densities, submeasures and partitions of groups
topic_facet partition of a group
density
submeasure
amenable group
05E15
05D10
28C10
format Article
author Banakh, Taras
Protasov, Igor
Slobodianiuk, Sergiy
author_facet Banakh, Taras
Protasov, Igor
Slobodianiuk, Sergiy
author_sort Banakh, Taras
title Densities, submeasures and partitions of groups
title_short Densities, submeasures and partitions of groups
title_full Densities, submeasures and partitions of groups
title_fullStr Densities, submeasures and partitions of groups
title_full_unstemmed Densities, submeasures and partitions of groups
title_sort densities, submeasures and partitions of groups
description In 1995 in Kourovka notebook the second author asked the following problem:  is it true that for each partition \(G=A_1\cup\dots\cup A_n\) of a group \(G\) there is a cell \(A_i\) of the partition such that \(G=FA_iA_i^{-1}\) for some set \(F\subset G\) of cardinality \(|F|\le n\)?  In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities  and submeasures on groups. In particular, we show that for any partition \(G=A_1\cup\dots\cup A_n\)  of a group \(G\) there are cells \(A_i\), \(A_j\) of the partition such that \(G=FA_jA_j^{-1}\) for some finite set \(F\subset G\) of cardinality \(|F|\le \max_{0<k\le n}\sum_{p=0}^{n-k}k^p\le n!\);   \(G=F\cdot\bigcup_{x\in E}xA_iA_i^{-1}x^{-1}\) for some finite sets \(F,E\subset G\) with \(|F|\le n\);   \(G=FA_iA_i^{-1}A_i\) for some finite set \(F\subset G\) of cardinality \(|F|\le n\);   the set \((A_iA_i^{-1})^{4^{n-1}}\) is a subgroup of index \(\le n\) in \(G\). The last three statements are derived from the corresponding density results.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1031
work_keys_str_mv AT banakhtaras densitiessubmeasuresandpartitionsofgroups
AT protasovigor densitiessubmeasuresandpartitionsofgroups
AT slobodianiuksergiy densitiessubmeasuresandpartitionsofgroups
first_indexed 2025-12-02T15:24:40Z
last_indexed 2025-12-02T15:24:40Z
_version_ 1850411825552687104