On the units of integral group ring of \(C_{n}\times C_{6}\)

There are many kind of open problems with varying difficulty on units in a given integral group ring. In this note, we characterize the unit group of the integral group ring of \(C_{n}\times C_{6}\) where \(C_{n}=\langle a:a^{n}=1\rangle\) and \(C_{6}=\langle x:x^{6}=1\rangle\). We show that \(\math...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
1. Verfasser: Küsmüş, Ömer
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2015
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/104
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-104
record_format ojs
spelling admjournalluguniveduua-article-1042015-11-10T19:25:54Z On the units of integral group ring of \(C_{n}\times C_{6}\) Küsmüş, Ömer group ring, integral group ring, unit group, unit problem 16U60, 16S34 There are many kind of open problems with varying difficulty on units in a given integral group ring. In this note, we characterize the unit group of the integral group ring of \(C_{n}\times C_{6}\) where \(C_{n}=\langle a:a^{n}=1\rangle\) and \(C_{6}=\langle x:x^{6}=1\rangle\). We show that \(\mathcal{U}_{1}(\mathbb{Z}[C_{n}\times C_{6}])\) can be expressed in terms of its 4 subgroups. Furthermore, forms of units in these subgroups are described by the unit group \(\mathcal{U}_{1}(\mathbb{Z}C_{n})\). Notations mostly follow \cite{sehgal2002}. Lugansk National Taras Shevchenko University 2015-11-09 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/104 Algebra and Discrete Mathematics; Vol 20, No 1 (2015): A special issue 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/104/34 Copyright (c) 2015 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2015-11-10T19:25:54Z
collection OJS
language English
topic group ring
integral group ring
unit group
unit problem
16U60
16S34
spellingShingle group ring
integral group ring
unit group
unit problem
16U60
16S34
Küsmüş, Ömer
On the units of integral group ring of \(C_{n}\times C_{6}\)
topic_facet group ring
integral group ring
unit group
unit problem
16U60
16S34
format Article
author Küsmüş, Ömer
author_facet Küsmüş, Ömer
author_sort Küsmüş, Ömer
title On the units of integral group ring of \(C_{n}\times C_{6}\)
title_short On the units of integral group ring of \(C_{n}\times C_{6}\)
title_full On the units of integral group ring of \(C_{n}\times C_{6}\)
title_fullStr On the units of integral group ring of \(C_{n}\times C_{6}\)
title_full_unstemmed On the units of integral group ring of \(C_{n}\times C_{6}\)
title_sort on the units of integral group ring of \(c_{n}\times c_{6}\)
description There are many kind of open problems with varying difficulty on units in a given integral group ring. In this note, we characterize the unit group of the integral group ring of \(C_{n}\times C_{6}\) where \(C_{n}=\langle a:a^{n}=1\rangle\) and \(C_{6}=\langle x:x^{6}=1\rangle\). We show that \(\mathcal{U}_{1}(\mathbb{Z}[C_{n}\times C_{6}])\) can be expressed in terms of its 4 subgroups. Furthermore, forms of units in these subgroups are described by the unit group \(\mathcal{U}_{1}(\mathbb{Z}C_{n})\). Notations mostly follow \cite{sehgal2002}.
publisher Lugansk National Taras Shevchenko University
publishDate 2015
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/104
work_keys_str_mv AT kusmusomer ontheunitsofintegralgroupringofcntimesc6
first_indexed 2025-12-02T15:33:54Z
last_indexed 2025-12-02T15:33:54Z
_version_ 1850411198143528960