A new characterization of alternating groups
Let \(G\) be a finite group and let \(\pi_{e}(G)\) be the set of element orders of \(G \). Let \(k \in \pi_{e}(G)\) and let \(m_{k}\) be the number of elements of order \(k \) in \(G\). Set nse(\(G\)):=\(\{ m_{k} | k \in \pi_{e}(G)\}\). In this paper, we show that if \(n = r\), \(r +1 \), \(r + 2\),...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1042 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-1042 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-10422018-04-26T02:28:53Z A new characterization of alternating groups Asboei, Alireza Khalili Amiri, Syyed Sadegh Salehi Iranmanesh, Ali finite group, simple group, alternating groups 20D06, 20D60 Let \(G\) be a finite group and let \(\pi_{e}(G)\) be the set of element orders of \(G \). Let \(k \in \pi_{e}(G)\) and let \(m_{k}\) be the number of elements of order \(k \) in \(G\). Set nse(\(G\)):=\(\{ m_{k} | k \in \pi_{e}(G)\}\). In this paper, we show that if \(n = r\), \(r +1 \), \(r + 2\), \(r + 3\) \(r+4\), or \(r + 5\) where \(r\geq5\) is the greatest prime not exceeding \(n\), then \(A_{n}\) characterizable by nse and order. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1042 Algebra and Discrete Mathematics; Vol 18, No 1 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1042/564 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-04-26T02:28:53Z |
| collection |
OJS |
| language |
English |
| topic |
finite group simple group alternating groups 20D06 20D60 |
| spellingShingle |
finite group simple group alternating groups 20D06 20D60 Asboei, Alireza Khalili Amiri, Syyed Sadegh Salehi Iranmanesh, Ali A new characterization of alternating groups |
| topic_facet |
finite group simple group alternating groups 20D06 20D60 |
| format |
Article |
| author |
Asboei, Alireza Khalili Amiri, Syyed Sadegh Salehi Iranmanesh, Ali |
| author_facet |
Asboei, Alireza Khalili Amiri, Syyed Sadegh Salehi Iranmanesh, Ali |
| author_sort |
Asboei, Alireza Khalili |
| title |
A new characterization of alternating groups |
| title_short |
A new characterization of alternating groups |
| title_full |
A new characterization of alternating groups |
| title_fullStr |
A new characterization of alternating groups |
| title_full_unstemmed |
A new characterization of alternating groups |
| title_sort |
new characterization of alternating groups |
| description |
Let \(G\) be a finite group and let \(\pi_{e}(G)\) be the set of element orders of \(G \). Let \(k \in \pi_{e}(G)\) and let \(m_{k}\) be the number of elements of order \(k \) in \(G\). Set nse(\(G\)):=\(\{ m_{k} | k \in \pi_{e}(G)\}\). In this paper, we show that if \(n = r\), \(r +1 \), \(r + 2\), \(r + 3\) \(r+4\), or \(r + 5\) where \(r\geq5\) is the greatest prime not exceeding \(n\), then \(A_{n}\) characterizable by nse and order. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1042 |
| work_keys_str_mv |
AT asboeialirezakhalili anewcharacterizationofalternatinggroups AT amirisyyedsadeghsalehi anewcharacterizationofalternatinggroups AT iranmaneshali anewcharacterizationofalternatinggroups AT asboeialirezakhalili newcharacterizationofalternatinggroups AT amirisyyedsadeghsalehi newcharacterizationofalternatinggroups AT iranmaneshali newcharacterizationofalternatinggroups |
| first_indexed |
2025-12-02T15:41:44Z |
| last_indexed |
2025-12-02T15:41:44Z |
| _version_ |
1850411690719444992 |