A new characterization of alternating groups

Let \(G\) be a finite group and let \(\pi_{e}(G)\) be the set of element orders of \(G \). Let \(k \in \pi_{e}(G)\) and let \(m_{k}\) be the number of elements of order \(k \) in \(G\). Set nse(\(G\)):=\(\{ m_{k} | k \in \pi_{e}(G)\}\). In this paper, we show that if \(n = r\), \(r +1 \), \(r + 2\),...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Asboei, Alireza Khalili, Amiri, Syyed Sadegh Salehi, Iranmanesh, Ali
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1042
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1042
record_format ojs
spelling admjournalluguniveduua-article-10422018-04-26T02:28:53Z A new characterization of alternating groups Asboei, Alireza Khalili Amiri, Syyed Sadegh Salehi Iranmanesh, Ali finite group, simple group, alternating groups 20D06, 20D60 Let \(G\) be a finite group and let \(\pi_{e}(G)\) be the set of element orders of \(G \). Let \(k \in \pi_{e}(G)\) and let \(m_{k}\) be the number of elements of order \(k \) in \(G\). Set nse(\(G\)):=\(\{ m_{k} | k \in \pi_{e}(G)\}\). In this paper, we show that if \(n = r\), \(r +1 \), \(r + 2\), \(r + 3\) \(r+4\), or \(r + 5\) where \(r\geq5\) is the greatest prime not exceeding \(n\), then \(A_{n}\) characterizable by nse and order. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1042 Algebra and Discrete Mathematics; Vol 18, No 1 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1042/564 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-26T02:28:53Z
collection OJS
language English
topic finite group
simple group
alternating groups
20D06
20D60
spellingShingle finite group
simple group
alternating groups
20D06
20D60
Asboei, Alireza Khalili
Amiri, Syyed Sadegh Salehi
Iranmanesh, Ali
A new characterization of alternating groups
topic_facet finite group
simple group
alternating groups
20D06
20D60
format Article
author Asboei, Alireza Khalili
Amiri, Syyed Sadegh Salehi
Iranmanesh, Ali
author_facet Asboei, Alireza Khalili
Amiri, Syyed Sadegh Salehi
Iranmanesh, Ali
author_sort Asboei, Alireza Khalili
title A new characterization of alternating groups
title_short A new characterization of alternating groups
title_full A new characterization of alternating groups
title_fullStr A new characterization of alternating groups
title_full_unstemmed A new characterization of alternating groups
title_sort new characterization of alternating groups
description Let \(G\) be a finite group and let \(\pi_{e}(G)\) be the set of element orders of \(G \). Let \(k \in \pi_{e}(G)\) and let \(m_{k}\) be the number of elements of order \(k \) in \(G\). Set nse(\(G\)):=\(\{ m_{k} | k \in \pi_{e}(G)\}\). In this paper, we show that if \(n = r\), \(r +1 \), \(r + 2\), \(r + 3\) \(r+4\), or \(r + 5\) where \(r\geq5\) is the greatest prime not exceeding \(n\), then \(A_{n}\) characterizable by nse and order.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1042
work_keys_str_mv AT asboeialirezakhalili anewcharacterizationofalternatinggroups
AT amirisyyedsadeghsalehi anewcharacterizationofalternatinggroups
AT iranmaneshali anewcharacterizationofalternatinggroups
AT asboeialirezakhalili newcharacterizationofalternatinggroups
AT amirisyyedsadeghsalehi newcharacterizationofalternatinggroups
AT iranmaneshali newcharacterizationofalternatinggroups
first_indexed 2025-12-02T15:41:44Z
last_indexed 2025-12-02T15:41:44Z
_version_ 1850411690719444992