A new characterization of alternating groups

Let \(G\) be a finite group and let \(\pi_{e}(G)\) be the set of element orders of \(G \). Let \(k \in \pi_{e}(G)\) and let \(m_{k}\) be the number of elements of order \(k \) in \(G\). Set nse(\(G\)):=\(\{ m_{k} | k \in \pi_{e}(G)\}\). In this paper, we show that if \(n = r\), \(r +1 \), \(r + 2\),...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Asboei, Alireza Khalili, Amiri, Syyed Sadegh Salehi, Iranmanesh, Ali
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1042
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543418180698112
author Asboei, Alireza Khalili
Amiri, Syyed Sadegh Salehi
Iranmanesh, Ali
author_facet Asboei, Alireza Khalili
Amiri, Syyed Sadegh Salehi
Iranmanesh, Ali
author_sort Asboei, Alireza Khalili
baseUrl_str
collection OJS
datestamp_date 2018-04-26T02:28:53Z
description Let \(G\) be a finite group and let \(\pi_{e}(G)\) be the set of element orders of \(G \). Let \(k \in \pi_{e}(G)\) and let \(m_{k}\) be the number of elements of order \(k \) in \(G\). Set nse(\(G\)):=\(\{ m_{k} | k \in \pi_{e}(G)\}\). In this paper, we show that if \(n = r\), \(r +1 \), \(r + 2\), \(r + 3\) \(r+4\), or \(r + 5\) where \(r\geq5\) is the greatest prime not exceeding \(n\), then \(A_{n}\) characterizable by nse and order.
first_indexed 2025-12-02T15:41:44Z
format Article
id admjournalluguniveduua-article-1042
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:41:44Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-10422018-04-26T02:28:53Z A new characterization of alternating groups Asboei, Alireza Khalili Amiri, Syyed Sadegh Salehi Iranmanesh, Ali finite group, simple group, alternating groups 20D06, 20D60 Let \(G\) be a finite group and let \(\pi_{e}(G)\) be the set of element orders of \(G \). Let \(k \in \pi_{e}(G)\) and let \(m_{k}\) be the number of elements of order \(k \) in \(G\). Set nse(\(G\)):=\(\{ m_{k} | k \in \pi_{e}(G)\}\). In this paper, we show that if \(n = r\), \(r +1 \), \(r + 2\), \(r + 3\) \(r+4\), or \(r + 5\) where \(r\geq5\) is the greatest prime not exceeding \(n\), then \(A_{n}\) characterizable by nse and order. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1042 Algebra and Discrete Mathematics; Vol 18, No 1 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1042/564 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle finite group
simple group
alternating groups
20D06
20D60
Asboei, Alireza Khalili
Amiri, Syyed Sadegh Salehi
Iranmanesh, Ali
A new characterization of alternating groups
title A new characterization of alternating groups
title_full A new characterization of alternating groups
title_fullStr A new characterization of alternating groups
title_full_unstemmed A new characterization of alternating groups
title_short A new characterization of alternating groups
title_sort new characterization of alternating groups
topic finite group
simple group
alternating groups
20D06
20D60
topic_facet finite group
simple group
alternating groups
20D06
20D60
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1042
work_keys_str_mv AT asboeialirezakhalili anewcharacterizationofalternatinggroups
AT amirisyyedsadeghsalehi anewcharacterizationofalternatinggroups
AT iranmaneshali anewcharacterizationofalternatinggroups
AT asboeialirezakhalili newcharacterizationofalternatinggroups
AT amirisyyedsadeghsalehi newcharacterizationofalternatinggroups
AT iranmaneshali newcharacterizationofalternatinggroups