On algebraic graph theory and non-bijective multivariate maps in cryptography
Special family of non-bijective multivariate maps \(F_n\) of \({Z_m}^n\)into itself is constructed for \(n = 2, 3, \dots\) and composite~\(m\).The map \(F_n\) is injective on \(\Omega_n=\{{\rm x}|x_1+x_2 + \dotsx_n \in {Z_m}^* \}\) and solution of the equation \(F_n({\rm x})={\rmb}, {\rm x}\in \Omeg...
Збережено в:
| Дата: | 2015 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2015
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/105 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | Special family of non-bijective multivariate maps \(F_n\) of \({Z_m}^n\)into itself is constructed for \(n = 2, 3, \dots\) and composite~\(m\).The map \(F_n\) is injective on \(\Omega_n=\{{\rm x}|x_1+x_2 + \dotsx_n \in {Z_m}^* \}\) and solution of the equation \(F_n({\rm x})={\rmb}, {\rm x}\in \Omega_n\) can be reduced to the solution of equation \(z^r=\alpha\), \(z \in {Z_m}^*\), \((r, \phi(m))=1\). The ``hidden RSAcryptosystem'' is proposed.Similar construction is suggested for the case \(\Omega_n={{Z_m}^*}^n\). |
|---|