Lattices of partial sums
In this paper we introduce and study a class of partially ordered sets that can be interpreted as partial sums of indeterminate real numbers. An important example of these partially ordered sets, is the classical Young lattice \(\mathbb{Y}\) of the integer partitions. In this context, the sum functi...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1055 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | In this paper we introduce and study a class of partially ordered sets that can be interpreted as partial sums of indeterminate real numbers. An important example of these partially ordered sets, is the classical Young lattice \(\mathbb{Y}\) of the integer partitions. In this context, the sum function associated to a specific assignment of real values to the indeterminate variables becomes a valuation on a distributive lattice. |
|---|