Exponent matrices and Frobenius rings
We give a survey of results connecting the exponent matrices with Frobenius rings. In particular, we prove that for any parmutation \(\sigma \in S_{n}\) there exists a countable set of indecomposable Frobenius semidistributive rings \(A_{m}\) with Nakayama permutation \( \sigma\).
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1056 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-1056 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-10562018-04-26T02:40:33Z Exponent matrices and Frobenius rings Dokuchaev, M. A. Kasyanuk, M. V. Khibina, M. A. Kirichenko, V. V. exponent matrix, Frobenius ring, distributive module, quiver of semiperfect ring 16P40, 16P20 We give a survey of results connecting the exponent matrices with Frobenius rings. In particular, we prove that for any parmutation \(\sigma \in S_{n}\) there exists a countable set of indecomposable Frobenius semidistributive rings \(A_{m}\) with Nakayama permutation \( \sigma\). Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1056 Algebra and Discrete Mathematics; Vol 18, No 2 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1056/578 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-04-26T02:40:33Z |
| collection |
OJS |
| language |
English |
| topic |
exponent matrix Frobenius ring distributive module quiver of semiperfect ring 16P40 16P20 |
| spellingShingle |
exponent matrix Frobenius ring distributive module quiver of semiperfect ring 16P40 16P20 Dokuchaev, M. A. Kasyanuk, M. V. Khibina, M. A. Kirichenko, V. V. Exponent matrices and Frobenius rings |
| topic_facet |
exponent matrix Frobenius ring distributive module quiver of semiperfect ring 16P40 16P20 |
| format |
Article |
| author |
Dokuchaev, M. A. Kasyanuk, M. V. Khibina, M. A. Kirichenko, V. V. |
| author_facet |
Dokuchaev, M. A. Kasyanuk, M. V. Khibina, M. A. Kirichenko, V. V. |
| author_sort |
Dokuchaev, M. A. |
| title |
Exponent matrices and Frobenius rings |
| title_short |
Exponent matrices and Frobenius rings |
| title_full |
Exponent matrices and Frobenius rings |
| title_fullStr |
Exponent matrices and Frobenius rings |
| title_full_unstemmed |
Exponent matrices and Frobenius rings |
| title_sort |
exponent matrices and frobenius rings |
| description |
We give a survey of results connecting the exponent matrices with Frobenius rings. In particular, we prove that for any parmutation \(\sigma \in S_{n}\) there exists a countable set of indecomposable Frobenius semidistributive rings \(A_{m}\) with Nakayama permutation \( \sigma\). |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1056 |
| work_keys_str_mv |
AT dokuchaevma exponentmatricesandfrobeniusrings AT kasyanukmv exponentmatricesandfrobeniusrings AT khibinama exponentmatricesandfrobeniusrings AT kirichenkovv exponentmatricesandfrobeniusrings |
| first_indexed |
2025-12-02T15:38:16Z |
| last_indexed |
2025-12-02T15:38:16Z |
| _version_ |
1850411473138876416 |