Exponent matrices and Frobenius rings

We give a survey of results connecting the exponent matrices with Frobenius rings. In particular, we prove that for any parmutation \(\sigma \in S_{n}\) there exists a countable set of indecomposable Frobenius semidistributive rings \(A_{m}\) with Nakayama permutation \( \sigma\).

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Dokuchaev, M. A., Kasyanuk, M. V., Khibina, M. A., Kirichenko, V. V.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1056
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1056
record_format ojs
spelling admjournalluguniveduua-article-10562018-04-26T02:40:33Z Exponent matrices and Frobenius rings Dokuchaev, M. A. Kasyanuk, M. V. Khibina, M. A. Kirichenko, V. V. exponent matrix, Frobenius ring, distributive module, quiver of semiperfect ring 16P40, 16P20 We give a survey of results connecting the exponent matrices with Frobenius rings. In particular, we prove that for any parmutation \(\sigma \in S_{n}\) there exists a countable set of indecomposable Frobenius semidistributive rings \(A_{m}\) with Nakayama permutation \( \sigma\). Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1056 Algebra and Discrete Mathematics; Vol 18, No 2 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1056/578 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-26T02:40:33Z
collection OJS
language English
topic exponent matrix
Frobenius ring
distributive module
quiver of semiperfect ring
16P40
16P20
spellingShingle exponent matrix
Frobenius ring
distributive module
quiver of semiperfect ring
16P40
16P20
Dokuchaev, M. A.
Kasyanuk, M. V.
Khibina, M. A.
Kirichenko, V. V.
Exponent matrices and Frobenius rings
topic_facet exponent matrix
Frobenius ring
distributive module
quiver of semiperfect ring
16P40
16P20
format Article
author Dokuchaev, M. A.
Kasyanuk, M. V.
Khibina, M. A.
Kirichenko, V. V.
author_facet Dokuchaev, M. A.
Kasyanuk, M. V.
Khibina, M. A.
Kirichenko, V. V.
author_sort Dokuchaev, M. A.
title Exponent matrices and Frobenius rings
title_short Exponent matrices and Frobenius rings
title_full Exponent matrices and Frobenius rings
title_fullStr Exponent matrices and Frobenius rings
title_full_unstemmed Exponent matrices and Frobenius rings
title_sort exponent matrices and frobenius rings
description We give a survey of results connecting the exponent matrices with Frobenius rings. In particular, we prove that for any parmutation \(\sigma \in S_{n}\) there exists a countable set of indecomposable Frobenius semidistributive rings \(A_{m}\) with Nakayama permutation \( \sigma\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1056
work_keys_str_mv AT dokuchaevma exponentmatricesandfrobeniusrings
AT kasyanukmv exponentmatricesandfrobeniusrings
AT khibinama exponentmatricesandfrobeniusrings
AT kirichenkovv exponentmatricesandfrobeniusrings
first_indexed 2025-12-02T15:38:16Z
last_indexed 2025-12-02T15:38:16Z
_version_ 1850411473138876416