Exponent matrices and Frobenius rings

We give a survey of results connecting the exponent matrices with Frobenius rings. In particular, we prove that for any parmutation \(\sigma \in S_{n}\) there exists a countable set of indecomposable Frobenius semidistributive rings \(A_{m}\) with Nakayama permutation \( \sigma\).

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Dokuchaev, M. A., Kasyanuk, M. V., Khibina, M. A., Kirichenko, V. V.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1056
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543180866977792
author Dokuchaev, M. A.
Kasyanuk, M. V.
Khibina, M. A.
Kirichenko, V. V.
author_facet Dokuchaev, M. A.
Kasyanuk, M. V.
Khibina, M. A.
Kirichenko, V. V.
author_sort Dokuchaev, M. A.
baseUrl_str
collection OJS
datestamp_date 2018-04-26T02:40:33Z
description We give a survey of results connecting the exponent matrices with Frobenius rings. In particular, we prove that for any parmutation \(\sigma \in S_{n}\) there exists a countable set of indecomposable Frobenius semidistributive rings \(A_{m}\) with Nakayama permutation \( \sigma\).
first_indexed 2025-12-02T15:38:16Z
format Article
id admjournalluguniveduua-article-1056
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:38:16Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-10562018-04-26T02:40:33Z Exponent matrices and Frobenius rings Dokuchaev, M. A. Kasyanuk, M. V. Khibina, M. A. Kirichenko, V. V. exponent matrix, Frobenius ring, distributive module, quiver of semiperfect ring 16P40, 16P20 We give a survey of results connecting the exponent matrices with Frobenius rings. In particular, we prove that for any parmutation \(\sigma \in S_{n}\) there exists a countable set of indecomposable Frobenius semidistributive rings \(A_{m}\) with Nakayama permutation \( \sigma\). Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1056 Algebra and Discrete Mathematics; Vol 18, No 2 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1056/578 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle exponent matrix
Frobenius ring
distributive module
quiver of semiperfect ring
16P40
16P20
Dokuchaev, M. A.
Kasyanuk, M. V.
Khibina, M. A.
Kirichenko, V. V.
Exponent matrices and Frobenius rings
title Exponent matrices and Frobenius rings
title_full Exponent matrices and Frobenius rings
title_fullStr Exponent matrices and Frobenius rings
title_full_unstemmed Exponent matrices and Frobenius rings
title_short Exponent matrices and Frobenius rings
title_sort exponent matrices and frobenius rings
topic exponent matrix
Frobenius ring
distributive module
quiver of semiperfect ring
16P40
16P20
topic_facet exponent matrix
Frobenius ring
distributive module
quiver of semiperfect ring
16P40
16P20
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1056
work_keys_str_mv AT dokuchaevma exponentmatricesandfrobeniusrings
AT kasyanukmv exponentmatricesandfrobeniusrings
AT khibinama exponentmatricesandfrobeniusrings
AT kirichenkovv exponentmatricesandfrobeniusrings