A geometrical interpretation of infinite wreath powers

A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P.Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal clo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Mikaelian, Vahagn H.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1059
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543048303902720
author Mikaelian, Vahagn H.
author_facet Mikaelian, Vahagn H.
author_sort Mikaelian, Vahagn H.
baseUrl_str
collection OJS
datestamp_date 2018-04-26T02:40:33Z
description A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P.Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal closure of one of the generators is locally soluble.
first_indexed 2025-12-02T15:49:55Z
format Article
id admjournalluguniveduua-article-1059
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:49:55Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-10592018-04-26T02:40:33Z A geometrical interpretation of infinite wreath powers Mikaelian, Vahagn H. 2-generator groups, soluble groups, locally soluble groups, wreath products, infinite wreath products, graphs, automorphisms of graphs 20E08, 20E22, 20F16 A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P.Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal closure of one of the generators is locally soluble. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1059 Algebra and Discrete Mathematics; Vol 18, No 2 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1059/581 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle 2-generator groups
soluble groups
locally soluble groups
wreath products
infinite wreath products
graphs
automorphisms of graphs
20E08
20E22
20F16
Mikaelian, Vahagn H.
A geometrical interpretation of infinite wreath powers
title A geometrical interpretation of infinite wreath powers
title_full A geometrical interpretation of infinite wreath powers
title_fullStr A geometrical interpretation of infinite wreath powers
title_full_unstemmed A geometrical interpretation of infinite wreath powers
title_short A geometrical interpretation of infinite wreath powers
title_sort geometrical interpretation of infinite wreath powers
topic 2-generator groups
soluble groups
locally soluble groups
wreath products
infinite wreath products
graphs
automorphisms of graphs
20E08
20E22
20F16
topic_facet 2-generator groups
soluble groups
locally soluble groups
wreath products
infinite wreath products
graphs
automorphisms of graphs
20E08
20E22
20F16
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1059
work_keys_str_mv AT mikaelianvahagnh ageometricalinterpretationofinfinitewreathpowers
AT mikaelianvahagnh geometricalinterpretationofinfinitewreathpowers