On elements of high order in general finite fields

We show that the Gao's construction gives for any finite field \(F_{q^{n}}\) elements with the multiplicative order at least \(\binom{n+t-1}{t}\prod _{i=0}^{t-1}\frac{1}{d^{i}}\), where \(d=\left\lceil 2\log _{q} n\right\rceil\), \(\;t=\left\lfloor \log _{d} n\right\rfloor\).

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Popovych, Roman
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1062
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543332950343680
author Popovych, Roman
author_facet Popovych, Roman
author_sort Popovych, Roman
baseUrl_str
collection OJS
datestamp_date 2018-04-26T02:40:33Z
description We show that the Gao's construction gives for any finite field \(F_{q^{n}}\) elements with the multiplicative order at least \(\binom{n+t-1}{t}\prod _{i=0}^{t-1}\frac{1}{d^{i}}\), where \(d=\left\lceil 2\log _{q} n\right\rceil\), \(\;t=\left\lfloor \log _{d} n\right\rfloor\).
first_indexed 2026-02-08T07:57:33Z
format Article
id admjournalluguniveduua-article-1062
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:57:33Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-10622018-04-26T02:40:33Z On elements of high order in general finite fields Popovych, Roman finite field, multiplicative order, Diophantine inequality 11T30 We show that the Gao's construction gives for any finite field \(F_{q^{n}}\) elements with the multiplicative order at least \(\binom{n+t-1}{t}\prod _{i=0}^{t-1}\frac{1}{d^{i}}\), where \(d=\left\lceil 2\log _{q} n\right\rceil\), \(\;t=\left\lfloor \log _{d} n\right\rfloor\). Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1062 Algebra and Discrete Mathematics; Vol 18, No 2 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1062/584 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle finite field
multiplicative order
Diophantine inequality
11T30
Popovych, Roman
On elements of high order in general finite fields
title On elements of high order in general finite fields
title_full On elements of high order in general finite fields
title_fullStr On elements of high order in general finite fields
title_full_unstemmed On elements of high order in general finite fields
title_short On elements of high order in general finite fields
title_sort on elements of high order in general finite fields
topic finite field
multiplicative order
Diophantine inequality
11T30
topic_facet finite field
multiplicative order
Diophantine inequality
11T30
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1062
work_keys_str_mv AT popovychroman onelementsofhighorderingeneralfinitefields