On elements of high order in general finite fields

We show that the Gao's construction gives for any finite field \(F_{q^{n}}\) elements with the multiplicative order at least \(\binom{n+t-1}{t}\prod _{i=0}^{t-1}\frac{1}{d^{i}}\), where \(d=\left\lceil 2\log _{q} n\right\rceil\), \(\;t=\left\lfloor \log _{d} n\right\rfloor\).

Saved in:
Bibliographic Details
Date:2018
Main Author: Popovych, Roman
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1062
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543332950343680
author Popovych, Roman
author_facet Popovych, Roman
author_sort Popovych, Roman
baseUrl_str
collection OJS
datestamp_date 2018-04-26T02:40:33Z
description We show that the Gao's construction gives for any finite field \(F_{q^{n}}\) elements with the multiplicative order at least \(\binom{n+t-1}{t}\prod _{i=0}^{t-1}\frac{1}{d^{i}}\), where \(d=\left\lceil 2\log _{q} n\right\rceil\), \(\;t=\left\lfloor \log _{d} n\right\rfloor\).
first_indexed 2026-02-08T07:57:33Z
format Article
id admjournalluguniveduua-article-1062
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:57:33Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-10622018-04-26T02:40:33Z On elements of high order in general finite fields Popovych, Roman finite field, multiplicative order, Diophantine inequality 11T30 We show that the Gao's construction gives for any finite field \(F_{q^{n}}\) elements with the multiplicative order at least \(\binom{n+t-1}{t}\prod _{i=0}^{t-1}\frac{1}{d^{i}}\), where \(d=\left\lceil 2\log _{q} n\right\rceil\), \(\;t=\left\lfloor \log _{d} n\right\rfloor\). Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1062 Algebra and Discrete Mathematics; Vol 18, No 2 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1062/584 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle finite field
multiplicative order
Diophantine inequality
11T30
Popovych, Roman
On elements of high order in general finite fields
title On elements of high order in general finite fields
title_full On elements of high order in general finite fields
title_fullStr On elements of high order in general finite fields
title_full_unstemmed On elements of high order in general finite fields
title_short On elements of high order in general finite fields
title_sort on elements of high order in general finite fields
topic finite field
multiplicative order
Diophantine inequality
11T30
topic_facet finite field
multiplicative order
Diophantine inequality
11T30
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1062
work_keys_str_mv AT popovychroman onelementsofhighorderingeneralfinitefields