Uniform ball structures

A ball structure is a triple \(\mathbb B=(X,P,B)\), where \(X,P\) are nonempty sets and, for all  \(x\in X\), \(\alpha \in P\), \(B(x,\alpha )\) is a subset of \(X, x\in B(x,\alpha )\), which is called a ball of radius \(\alpha \) around \(x\). We introduce the class of uniform ball structures as an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Protasov, I. V.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1145
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1145
record_format ojs
spelling admjournalluguniveduua-article-11452018-05-13T06:43:21Z Uniform ball structures Protasov, I. V. ball structure, metrizability 03E99, 54A05, 54E15 A ball structure is a triple \(\mathbb B=(X,P,B)\), where \(X,P\) are nonempty sets and, for all  \(x\in X\), \(\alpha \in P\), \(B(x,\alpha )\) is a subset of \(X, x\in B(x,\alpha )\), which is called a ball of radius \(\alpha \) around \(x\). We introduce the class of uniform ball structures as an asymptotic counterpart of the class of uniform topological spaces. We show that every uniform ball structure can be approximated by metrizable ball structures. We also define two types of ball structures closed to being metrizable, and describe the extremal elements in the classes of ball structures with fixed support \(X\). Lugansk National Taras Shevchenko University 2018-05-13 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1145 Algebra and Discrete Mathematics; Vol 2, No 1 (2003) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1145/637 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-05-13T06:43:21Z
collection OJS
language English
topic ball structure
metrizability
03E99
54A05
54E15
spellingShingle ball structure
metrizability
03E99
54A05
54E15
Protasov, I. V.
Uniform ball structures
topic_facet ball structure
metrizability
03E99
54A05
54E15
format Article
author Protasov, I. V.
author_facet Protasov, I. V.
author_sort Protasov, I. V.
title Uniform ball structures
title_short Uniform ball structures
title_full Uniform ball structures
title_fullStr Uniform ball structures
title_full_unstemmed Uniform ball structures
title_sort uniform ball structures
description A ball structure is a triple \(\mathbb B=(X,P,B)\), where \(X,P\) are nonempty sets and, for all  \(x\in X\), \(\alpha \in P\), \(B(x,\alpha )\) is a subset of \(X, x\in B(x,\alpha )\), which is called a ball of radius \(\alpha \) around \(x\). We introduce the class of uniform ball structures as an asymptotic counterpart of the class of uniform topological spaces. We show that every uniform ball structure can be approximated by metrizable ball structures. We also define two types of ball structures closed to being metrizable, and describe the extremal elements in the classes of ball structures with fixed support \(X\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1145
work_keys_str_mv AT protasoviv uniformballstructures
first_indexed 2025-12-02T15:47:16Z
last_indexed 2025-12-02T15:47:16Z
_version_ 1850412039061635072