An additive divisor problem in \(\mathbb{Z}[i]\)

Let \(\tau(\alpha)\) be the number of divisors of the Gaussian integer \(\alpha\). An asymptotic formula for the summatory function \(\sum\limits_{N(\alpha)\leq x}\tau(\alpha)\tau(\alpha+\beta)\) is obtained under the condition \(N(\beta)\leq x^{3/8}\). This is a generalization of the well-known add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Savasrtu, O. V., Varbanets, P. D.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1146
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1146
record_format ojs
spelling admjournalluguniveduua-article-11462018-05-13T06:43:21Z An additive divisor problem in \(\mathbb{Z}[i]\) Savasrtu, O. V. Varbanets, P. D. additive divisor problem, asymptotic formula 11N37, 11R42 Let \(\tau(\alpha)\) be the number of divisors of the Gaussian integer \(\alpha\). An asymptotic formula for the summatory function \(\sum\limits_{N(\alpha)\leq x}\tau(\alpha)\tau(\alpha+\beta)\) is obtained under the condition \(N(\beta)\leq x^{3/8}\). This is a generalization of the well-known additive divisor problem for the natural numbers. Lugansk National Taras Shevchenko University 2018-05-13 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1146 Algebra and Discrete Mathematics; Vol 2, No 1 (2003) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1146/638 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-05-13T06:43:21Z
collection OJS
language English
topic additive divisor problem
asymptotic formula
11N37
11R42
spellingShingle additive divisor problem
asymptotic formula
11N37
11R42
Savasrtu, O. V.
Varbanets, P. D.
An additive divisor problem in \(\mathbb{Z}[i]\)
topic_facet additive divisor problem
asymptotic formula
11N37
11R42
format Article
author Savasrtu, O. V.
Varbanets, P. D.
author_facet Savasrtu, O. V.
Varbanets, P. D.
author_sort Savasrtu, O. V.
title An additive divisor problem in \(\mathbb{Z}[i]\)
title_short An additive divisor problem in \(\mathbb{Z}[i]\)
title_full An additive divisor problem in \(\mathbb{Z}[i]\)
title_fullStr An additive divisor problem in \(\mathbb{Z}[i]\)
title_full_unstemmed An additive divisor problem in \(\mathbb{Z}[i]\)
title_sort additive divisor problem in \(\mathbb{z}[i]\)
description Let \(\tau(\alpha)\) be the number of divisors of the Gaussian integer \(\alpha\). An asymptotic formula for the summatory function \(\sum\limits_{N(\alpha)\leq x}\tau(\alpha)\tau(\alpha+\beta)\) is obtained under the condition \(N(\beta)\leq x^{3/8}\). This is a generalization of the well-known additive divisor problem for the natural numbers.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1146
work_keys_str_mv AT savasrtuov anadditivedivisorprobleminmathbbzi
AT varbanetspd anadditivedivisorprobleminmathbbzi
AT savasrtuov additivedivisorprobleminmathbbzi
AT varbanetspd additivedivisorprobleminmathbbzi
first_indexed 2025-12-02T15:41:56Z
last_indexed 2025-12-02T15:41:56Z
_version_ 1850411703527800832