Ramseyan variations on symmetric subsequences

A theorem of Dekking in the combinatorics of words implies that there exists an injective order-preserving transformation \(f : {\{0,1,\ldots,n\}}\rightarrow  {\{0,1,\ldots,2n\}}\) with the restriction \(f(i+1)\le f(i) + 2\) such that for every 5-term arithmetic progression \(P\) its image \(f(P)\)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Verbitsky, Oleg
Format: Artikel
Sprache:Englisch
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1147
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543027822067712
author Verbitsky, Oleg
author_facet Verbitsky, Oleg
author_sort Verbitsky, Oleg
baseUrl_str
collection OJS
datestamp_date 2018-05-13T06:43:21Z
description A theorem of Dekking in the combinatorics of words implies that there exists an injective order-preserving transformation \(f : {\{0,1,\ldots,n\}}\rightarrow  {\{0,1,\ldots,2n\}}\) with the restriction \(f(i+1)\le f(i) + 2\) such that for every 5-term arithmetic progression \(P\) its image \(f(P)\) is not an arithmetic progression. In this paper we consider symmetric sets in place of arithmetic progressions and prove lower and upper bounds for the maximum \(M=M(n)\) such that every \(f\) as above preserves the symmetry of at least one symmetric set \(S\subseteq\{0,1,\ldots,n\}\) with \(|S|\ge M\).
first_indexed 2025-12-02T15:38:26Z
format Article
id admjournalluguniveduua-article-1147
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:38:26Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-11472018-05-13T06:43:21Z Ramseyan variations on symmetric subsequences Verbitsky, Oleg A theorem of Dekking in the combinatorics of words implies that there exists an injective order-preserving transformation \(f : {\{0,1,\ldots,n\}}\rightarrow  {\{0,1,\ldots,2n\}}\) with the restriction \(f(i+1)\le f(i) + 2\) such that for every 5-term arithmetic progression \(P\) its image \(f(P)\) is not an arithmetic progression. In this paper we consider symmetric sets in place of arithmetic progressions and prove lower and upper bounds for the maximum \(M=M(n)\) such that every \(f\) as above preserves the symmetry of at least one symmetric set \(S\subseteq\{0,1,\ldots,n\}\) with \(|S|\ge M\). Lugansk National Taras Shevchenko University 2018-05-13 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1147 Algebra and Discrete Mathematics; Vol 2, No 1 (2003) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1147/639 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle

Verbitsky, Oleg
Ramseyan variations on symmetric subsequences
title Ramseyan variations on symmetric subsequences
title_full Ramseyan variations on symmetric subsequences
title_fullStr Ramseyan variations on symmetric subsequences
title_full_unstemmed Ramseyan variations on symmetric subsequences
title_short Ramseyan variations on symmetric subsequences
title_sort ramseyan variations on symmetric subsequences
topic

topic_facet

url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1147
work_keys_str_mv AT verbitskyoleg ramseyanvariationsonsymmetricsubsequences