Relative symmetric polynomials and money change problem
This article is devoted to the number of non-negative solutions of the linear Diophantine equation\[a_1t_1+a_2t_2+\cdots +a_nt_n=d,\]where \(a_1, \ldots, a_n\), and \(d\) are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric gro...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | Англійська |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1162 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| _version_ | 1856543131435008000 |
|---|---|
| author | Shahryari, M. |
| author_facet | Shahryari, M. |
| author_sort | Shahryari, M. |
| baseUrl_str | |
| collection | OJS |
| datestamp_date | 2018-05-16T05:04:06Z |
| description | This article is devoted to the number of non-negative solutions of the linear Diophantine equation\[a_1t_1+a_2t_2+\cdots +a_nt_n=d,\]where \(a_1, \ldots, a_n\), and \(d\) are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symmetric polynomials. As an application, we give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero. |
| first_indexed | 2026-02-08T07:57:35Z |
| format | Article |
| id | admjournalluguniveduua-article-1162 |
| institution | Algebra and Discrete Mathematics |
| language | English |
| last_indexed | 2026-02-08T07:57:35Z |
| publishDate | 2018 |
| publisher | Lugansk National Taras Shevchenko University |
| record_format | ojs |
| spelling | admjournalluguniveduua-article-11622018-05-16T05:04:06Z Relative symmetric polynomials and money change problem Shahryari, M. Money change problem; Partitions of integers; Relative symmetric polynomials; Symmetric groups; Complex characters Primary 05A17, Secondary 05E05 and 15A69 This article is devoted to the number of non-negative solutions of the linear Diophantine equation\[a_1t_1+a_2t_2+\cdots +a_nt_n=d,\]where \(a_1, \ldots, a_n\), and \(d\) are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symmetric polynomials. As an application, we give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero. Lugansk National Taras Shevchenko University 2018-05-16 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1162 Algebra and Discrete Mathematics; Vol 16, No 2 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1162/654 Copyright (c) 2018 Algebra and Discrete Mathematics |
| spellingShingle | Money change problem Partitions of integers Relative symmetric polynomials Symmetric groups Complex characters Primary 05A17 Secondary 05E05 and 15A69 Shahryari, M. Relative symmetric polynomials and money change problem |
| title | Relative symmetric polynomials and money change problem |
| title_full | Relative symmetric polynomials and money change problem |
| title_fullStr | Relative symmetric polynomials and money change problem |
| title_full_unstemmed | Relative symmetric polynomials and money change problem |
| title_short | Relative symmetric polynomials and money change problem |
| title_sort | relative symmetric polynomials and money change problem |
| topic | Money change problem Partitions of integers Relative symmetric polynomials Symmetric groups Complex characters Primary 05A17 Secondary 05E05 and 15A69 |
| topic_facet | Money change problem Partitions of integers Relative symmetric polynomials Symmetric groups Complex characters Primary 05A17 Secondary 05E05 and 15A69 |
| url | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1162 |
| work_keys_str_mv | AT shahryarim relativesymmetricpolynomialsandmoneychangeproblem |