Relative symmetric polynomials and money change problem

This article is devoted to the number of non-negative solutions of the linear Diophantine equation\[a_1t_1+a_2t_2+\cdots +a_nt_n=d,\]where \(a_1, \ldots, a_n\), and \(d\) are positive integers. We  obtain a relation between the number of solutions of this equation and characters of the symmetric gro...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Shahryari, M.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1162
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543131435008000
author Shahryari, M.
author_facet Shahryari, M.
author_sort Shahryari, M.
baseUrl_str
collection OJS
datestamp_date 2018-05-16T05:04:06Z
description This article is devoted to the number of non-negative solutions of the linear Diophantine equation\[a_1t_1+a_2t_2+\cdots +a_nt_n=d,\]where \(a_1, \ldots, a_n\), and \(d\) are positive integers. We  obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symmetric polynomials. As an application, we  give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero.
first_indexed 2026-02-08T07:57:35Z
format Article
id admjournalluguniveduua-article-1162
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:57:35Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-11622018-05-16T05:04:06Z Relative symmetric polynomials and money change problem Shahryari, M. Money change problem; Partitions of integers; Relative symmetric polynomials; Symmetric groups; Complex characters Primary 05A17, Secondary 05E05 and 15A69 This article is devoted to the number of non-negative solutions of the linear Diophantine equation\[a_1t_1+a_2t_2+\cdots +a_nt_n=d,\]where \(a_1, \ldots, a_n\), and \(d\) are positive integers. We  obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symmetric polynomials. As an application, we  give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero. Lugansk National Taras Shevchenko University 2018-05-16 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1162 Algebra and Discrete Mathematics; Vol 16, No 2 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1162/654 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle Money change problem
Partitions of integers
Relative symmetric polynomials
Symmetric groups
Complex characters
Primary 05A17
Secondary 05E05 and 15A69
Shahryari, M.
Relative symmetric polynomials and money change problem
title Relative symmetric polynomials and money change problem
title_full Relative symmetric polynomials and money change problem
title_fullStr Relative symmetric polynomials and money change problem
title_full_unstemmed Relative symmetric polynomials and money change problem
title_short Relative symmetric polynomials and money change problem
title_sort relative symmetric polynomials and money change problem
topic Money change problem
Partitions of integers
Relative symmetric polynomials
Symmetric groups
Complex characters
Primary 05A17
Secondary 05E05 and 15A69
topic_facet Money change problem
Partitions of integers
Relative symmetric polynomials
Symmetric groups
Complex characters
Primary 05A17
Secondary 05E05 and 15A69
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1162
work_keys_str_mv AT shahryarim relativesymmetricpolynomialsandmoneychangeproblem