Leibniz algebras with absolute maximal Lie subalgebras

A Lie subalgebra of a given Leibniz algebra is said to be an absolute maximal Lie subalgebra if it has codimension one. In this paper, we study some properties of non-Lie Leibniz algebras containing absolute maximal Lie subalgebras. When the dimension and codimension of their Lie-center are greater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
Hauptverfasser: Biyogmam, G. R., Tcheka, C.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2020
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1165
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1165
record_format ojs
spelling admjournalluguniveduua-article-11652020-05-14T18:27:22Z Leibniz algebras with absolute maximal Lie subalgebras Biyogmam, G. R. Tcheka, C. Leibniz algebras, \(s\)-Leibniz algebras, Lie-center 17A32, 17B55, 18B99 A Lie subalgebra of a given Leibniz algebra is said to be an absolute maximal Lie subalgebra if it has codimension one. In this paper, we study some properties of non-Lie Leibniz algebras containing absolute maximal Lie subalgebras. When the dimension and codimension of their Lie-center are greater than two, we refer to these Leibniz algebras as \(s\)-Leibniz algebras (strong Leibniz algebras). We provide a classification of nilpotent Leibniz \(s\)-algebras of dimension up to five. Lugansk National Taras Shevchenko University 2020-05-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1165 10.12958/adm1165 Algebra and Discrete Mathematics; Vol 29, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1165/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1165/475 Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2020-05-14T18:27:22Z
collection OJS
language English
topic Leibniz algebras
\(s\)-Leibniz algebras
Lie-center
17A32
17B55
18B99
spellingShingle Leibniz algebras
\(s\)-Leibniz algebras
Lie-center
17A32
17B55
18B99
Biyogmam, G. R.
Tcheka, C.
Leibniz algebras with absolute maximal Lie subalgebras
topic_facet Leibniz algebras
\(s\)-Leibniz algebras
Lie-center
17A32
17B55
18B99
format Article
author Biyogmam, G. R.
Tcheka, C.
author_facet Biyogmam, G. R.
Tcheka, C.
author_sort Biyogmam, G. R.
title Leibniz algebras with absolute maximal Lie subalgebras
title_short Leibniz algebras with absolute maximal Lie subalgebras
title_full Leibniz algebras with absolute maximal Lie subalgebras
title_fullStr Leibniz algebras with absolute maximal Lie subalgebras
title_full_unstemmed Leibniz algebras with absolute maximal Lie subalgebras
title_sort leibniz algebras with absolute maximal lie subalgebras
description A Lie subalgebra of a given Leibniz algebra is said to be an absolute maximal Lie subalgebra if it has codimension one. In this paper, we study some properties of non-Lie Leibniz algebras containing absolute maximal Lie subalgebras. When the dimension and codimension of their Lie-center are greater than two, we refer to these Leibniz algebras as \(s\)-Leibniz algebras (strong Leibniz algebras). We provide a classification of nilpotent Leibniz \(s\)-algebras of dimension up to five.
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1165
work_keys_str_mv AT biyogmamgr leibnizalgebraswithabsolutemaximalliesubalgebras
AT tchekac leibnizalgebraswithabsolutemaximalliesubalgebras
first_indexed 2025-12-02T15:49:57Z
last_indexed 2025-12-02T15:49:57Z
_version_ 1850412208038608896