Leibniz algebras with absolute maximal Lie subalgebras
A Lie subalgebra of a given Leibniz algebra is said to be an absolute maximal Lie subalgebra if it has codimension one. In this paper, we study some properties of non-Lie Leibniz algebras containing absolute maximal Lie subalgebras. When the dimension and codimension of their Lie-center are greater...
Gespeichert in:
| Datum: | 2020 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2020
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1165 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-1165 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-11652020-05-14T18:27:22Z Leibniz algebras with absolute maximal Lie subalgebras Biyogmam, G. R. Tcheka, C. Leibniz algebras, \(s\)-Leibniz algebras, Lie-center 17A32, 17B55, 18B99 A Lie subalgebra of a given Leibniz algebra is said to be an absolute maximal Lie subalgebra if it has codimension one. In this paper, we study some properties of non-Lie Leibniz algebras containing absolute maximal Lie subalgebras. When the dimension and codimension of their Lie-center are greater than two, we refer to these Leibniz algebras as \(s\)-Leibniz algebras (strong Leibniz algebras). We provide a classification of nilpotent Leibniz \(s\)-algebras of dimension up to five. Lugansk National Taras Shevchenko University 2020-05-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1165 10.12958/adm1165 Algebra and Discrete Mathematics; Vol 29, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1165/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1165/475 Copyright (c) 2020 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2020-05-14T18:27:22Z |
| collection |
OJS |
| language |
English |
| topic |
Leibniz algebras \(s\)-Leibniz algebras Lie-center 17A32 17B55 18B99 |
| spellingShingle |
Leibniz algebras \(s\)-Leibniz algebras Lie-center 17A32 17B55 18B99 Biyogmam, G. R. Tcheka, C. Leibniz algebras with absolute maximal Lie subalgebras |
| topic_facet |
Leibniz algebras \(s\)-Leibniz algebras Lie-center 17A32 17B55 18B99 |
| format |
Article |
| author |
Biyogmam, G. R. Tcheka, C. |
| author_facet |
Biyogmam, G. R. Tcheka, C. |
| author_sort |
Biyogmam, G. R. |
| title |
Leibniz algebras with absolute maximal Lie subalgebras |
| title_short |
Leibniz algebras with absolute maximal Lie subalgebras |
| title_full |
Leibniz algebras with absolute maximal Lie subalgebras |
| title_fullStr |
Leibniz algebras with absolute maximal Lie subalgebras |
| title_full_unstemmed |
Leibniz algebras with absolute maximal Lie subalgebras |
| title_sort |
leibniz algebras with absolute maximal lie subalgebras |
| description |
A Lie subalgebra of a given Leibniz algebra is said to be an absolute maximal Lie subalgebra if it has codimension one. In this paper, we study some properties of non-Lie Leibniz algebras containing absolute maximal Lie subalgebras. When the dimension and codimension of their Lie-center are greater than two, we refer to these Leibniz algebras as \(s\)-Leibniz algebras (strong Leibniz algebras). We provide a classification of nilpotent Leibniz \(s\)-algebras of dimension up to five. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2020 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1165 |
| work_keys_str_mv |
AT biyogmamgr leibnizalgebraswithabsolutemaximalliesubalgebras AT tchekac leibnizalgebraswithabsolutemaximalliesubalgebras |
| first_indexed |
2025-12-02T15:49:57Z |
| last_indexed |
2025-12-02T15:49:57Z |
| _version_ |
1850412208038608896 |