On representations of permutations groups as isometry groups of \(n\)-semimetric spaces
We prove that every finite permutation group can be represented as the isometry group of some \(n\)-semimetric space. We show that if a finite permutation group can be realized as the isometry group of some \(n\)-semimetric space then this permutation group can be represented as the isometry gro...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1176 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-1176 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-11762018-05-17T07:50:53Z On representations of permutations groups as isometry groups of \(n\)-semimetric spaces Gerdiy, Oleg Oliynyk, Bogdana \(n\)-semimetric, permutation group, isometry group 54B25, 20B25, 54E40 We prove that every finite permutation group can be represented as the isometry group of some \(n\)-semimetric space. We show that if a finite permutation group can be realized as the isometry group of some \(n\)-semimetric space then this permutation group can be represented as the isometry group of some \((n+1)\)-semimetric space. The notion of the semimetric rank of a permutation group is introduced. Lugansk National Taras Shevchenko University 2018-05-17 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1176 Algebra and Discrete Mathematics; Vol 19, No 1 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1176/665 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-05-17T07:50:53Z |
| collection |
OJS |
| language |
English |
| topic |
\(n\)-semimetric permutation group isometry group 54B25 20B25 54E40 |
| spellingShingle |
\(n\)-semimetric permutation group isometry group 54B25 20B25 54E40 Gerdiy, Oleg Oliynyk, Bogdana On representations of permutations groups as isometry groups of \(n\)-semimetric spaces |
| topic_facet |
\(n\)-semimetric permutation group isometry group 54B25 20B25 54E40 |
| format |
Article |
| author |
Gerdiy, Oleg Oliynyk, Bogdana |
| author_facet |
Gerdiy, Oleg Oliynyk, Bogdana |
| author_sort |
Gerdiy, Oleg |
| title |
On representations of permutations groups as isometry groups of \(n\)-semimetric spaces |
| title_short |
On representations of permutations groups as isometry groups of \(n\)-semimetric spaces |
| title_full |
On representations of permutations groups as isometry groups of \(n\)-semimetric spaces |
| title_fullStr |
On representations of permutations groups as isometry groups of \(n\)-semimetric spaces |
| title_full_unstemmed |
On representations of permutations groups as isometry groups of \(n\)-semimetric spaces |
| title_sort |
on representations of permutations groups as isometry groups of \(n\)-semimetric spaces |
| description |
We prove that every finite permutation group can be represented as the isometry group of some \(n\)-semimetric space. We show that if a finite permutation group can be realized as the isometry group of some \(n\)-semimetric space then this permutation group can be represented as the isometry group of some \((n+1)\)-semimetric space. The notion of the semimetric rank of a permutation group is introduced. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1176 |
| work_keys_str_mv |
AT gerdiyoleg onrepresentationsofpermutationsgroupsasisometrygroupsofnsemimetricspaces AT oliynykbogdana onrepresentationsofpermutationsgroupsasisometrygroupsofnsemimetricspaces |
| first_indexed |
2025-12-02T15:29:47Z |
| last_indexed |
2025-12-02T15:29:47Z |
| _version_ |
1850410939104362496 |