\(F\)-supplemented modules
Let \(R\) be a ring, let \(M\) be a left \(R\)-module, and let \(U, V, F\) be submodules of \(M\) with \(F\) proper. We call \(V\) an \(F\)-supplement of \(U\) in \(M\) if \(V\) is minimal in the set \( F \subseteq X \subseteq M\) such that \( U + X = M\), or equivalently, \(F\subseteq V\), \(U + V...
Збережено в:
| Дата: | 2020 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2020
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1185 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | Let \(R\) be a ring, let \(M\) be a left \(R\)-module, and let \(U, V, F\) be submodules of \(M\) with \(F\) proper. We call \(V\) an \(F\)-supplement of \(U\) in \(M\) if \(V\) is minimal in the set \( F \subseteq X \subseteq M\) such that \( U + X = M\), or equivalently, \(F\subseteq V\), \(U + V = M\) and \(U \cap V \) is \(F\)-small in \( V\). If every submodule of \(M\) has an \(F\)-supplement, then we call \(M\) an \(F\)-supplemented module. In this paper, we introduce and investigate \(F\)-supplement submodules and (amply) \(F\)-supplemented modules. We give some properties of these modules, and characterize finitely generated (amply) \(F\)-supplemented modules in terms of their certain submodules. |
|---|