\(F\)-supplemented modules

Let \(R\) be a ring, let \(M\) be a left \(R\)-module, and let \(U, V, F\) be submodules of \(M\) with \(F\) proper. We call \(V\) an \(F\)-supplement of \(U\) in \(M\) if \(V\) is minimal in the set \( F \subseteq X \subseteq M\) such that \( U + X = M\), or equivalently, \(F\subseteq V\), \(U + V...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автор: Özdemir, S.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1185
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543051458019328
author Özdemir, S.
author_facet Özdemir, S.
author_sort Özdemir, S.
baseUrl_str
collection OJS
datestamp_date 2021-01-05T07:13:09Z
description Let \(R\) be a ring, let \(M\) be a left \(R\)-module, and let \(U, V, F\) be submodules of \(M\) with \(F\) proper. We call \(V\) an \(F\)-supplement of \(U\) in \(M\) if \(V\) is minimal in the set \( F \subseteq X \subseteq M\) such that \( U + X = M\), or equivalently, \(F\subseteq V\), \(U + V = M\) and \(U \cap V \) is \(F\)-small in \( V\). If every submodule of \(M\) has an \(F\)-supplement, then we call \(M\) an \(F\)-supplemented module. In this paper, we introduce and investigate \(F\)-supplement submodules and (amply) \(F\)-supplemented modules. We give some properties of these modules, and characterize finitely generated (amply) \(F\)-supplemented modules in terms of their certain submodules.
first_indexed 2025-12-02T15:29:53Z
format Article
id admjournalluguniveduua-article-1185
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:29:53Z
publishDate 2020
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-11852021-01-05T07:13:09Z \(F\)-supplemented modules Özdemir, S. \(F\)-supplement and \(F\)-small submodules, \(F\)-supplemented, \(F\)-local and \(F\)-hollow modules 16D10, 16D80 Let \(R\) be a ring, let \(M\) be a left \(R\)-module, and let \(U, V, F\) be submodules of \(M\) with \(F\) proper. We call \(V\) an \(F\)-supplement of \(U\) in \(M\) if \(V\) is minimal in the set \( F \subseteq X \subseteq M\) such that \( U + X = M\), or equivalently, \(F\subseteq V\), \(U + V = M\) and \(U \cap V \) is \(F\)-small in \( V\). If every submodule of \(M\) has an \(F\)-supplement, then we call \(M\) an \(F\)-supplemented module. In this paper, we introduce and investigate \(F\)-supplement submodules and (amply) \(F\)-supplemented modules. We give some properties of these modules, and characterize finitely generated (amply) \(F\)-supplemented modules in terms of their certain submodules. Lugansk National Taras Shevchenko University 2020-12-30 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1185 10.12958/adm1185 Algebra and Discrete Mathematics; Vol 30, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1185/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1185/369 Copyright (c) 2020 Algebra and Discrete Mathematics
spellingShingle \(F\)-supplement and \(F\)-small submodules
\(F\)-supplemented
\(F\)-local and \(F\)-hollow modules
16D10
16D80
Özdemir, S.
\(F\)-supplemented modules
title \(F\)-supplemented modules
title_full \(F\)-supplemented modules
title_fullStr \(F\)-supplemented modules
title_full_unstemmed \(F\)-supplemented modules
title_short \(F\)-supplemented modules
title_sort \(f\)-supplemented modules
topic \(F\)-supplement and \(F\)-small submodules
\(F\)-supplemented
\(F\)-local and \(F\)-hollow modules
16D10
16D80
topic_facet \(F\)-supplement and \(F\)-small submodules
\(F\)-supplemented
\(F\)-local and \(F\)-hollow modules
16D10
16D80
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1185
work_keys_str_mv AT ozdemirs fsupplementedmodules