Gram matrices and Stirling numbers of a class of diagram algebras, II

In the paper [6], we introduced Gram matrices for the signed partition algebras, the algebra of \(\mathbb{Z}_2\)-relations and the partition algebras. \((s_1, s_2, r_1, r_2, p_1, p_2)\)-Stirling numbers of the second kind are also introduced and their identities are established. In this paper, we pr...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Karimilla Bi, N., Parvathi, M.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1219
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1219
record_format ojs
spelling admjournalluguniveduua-article-12192018-07-24T22:56:15Z Gram matrices and Stirling numbers of a class of diagram algebras, II Karimilla Bi, N. Parvathi, M. Gram matrices, partition algebras, signed partition algebras and the algebra of \(\mathbb{Z}_2\)-relations 16Z05 In the paper [6], we introduced Gram matrices for the signed partition algebras, the algebra of \(\mathbb{Z}_2\)-relations and the partition algebras. \((s_1, s_2, r_1, r_2, p_1, p_2)\)-Stirling numbers of the second kind are also introduced and their identities are established. In this paper, we prove that the Gram matrix is similar to a matrix which is a direct sum of block submatrices. As a consequence, the semisimplicity of a signed partition algebra is established. Lugansk National Taras Shevchenko University 2018-07-25 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1219 Algebra and Discrete Mathematics; Vol 25, No 2 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1219/pdf Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-07-24T22:56:15Z
collection OJS
language English
topic Gram matrices
partition algebras
signed partition algebras and the algebra of \(\mathbb{Z}_2\)-relations
16Z05
spellingShingle Gram matrices
partition algebras
signed partition algebras and the algebra of \(\mathbb{Z}_2\)-relations
16Z05
Karimilla Bi, N.
Parvathi, M.
Gram matrices and Stirling numbers of a class of diagram algebras, II
topic_facet Gram matrices
partition algebras
signed partition algebras and the algebra of \(\mathbb{Z}_2\)-relations
16Z05
format Article
author Karimilla Bi, N.
Parvathi, M.
author_facet Karimilla Bi, N.
Parvathi, M.
author_sort Karimilla Bi, N.
title Gram matrices and Stirling numbers of a class of diagram algebras, II
title_short Gram matrices and Stirling numbers of a class of diagram algebras, II
title_full Gram matrices and Stirling numbers of a class of diagram algebras, II
title_fullStr Gram matrices and Stirling numbers of a class of diagram algebras, II
title_full_unstemmed Gram matrices and Stirling numbers of a class of diagram algebras, II
title_sort gram matrices and stirling numbers of a class of diagram algebras, ii
description In the paper [6], we introduced Gram matrices for the signed partition algebras, the algebra of \(\mathbb{Z}_2\)-relations and the partition algebras. \((s_1, s_2, r_1, r_2, p_1, p_2)\)-Stirling numbers of the second kind are also introduced and their identities are established. In this paper, we prove that the Gram matrix is similar to a matrix which is a direct sum of block submatrices. As a consequence, the semisimplicity of a signed partition algebra is established.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1219
work_keys_str_mv AT karimillabin grammatricesandstirlingnumbersofaclassofdiagramalgebrasii
AT parvathim grammatricesandstirlingnumbersofaclassofdiagramalgebrasii
first_indexed 2025-12-02T15:38:37Z
last_indexed 2025-12-02T15:38:37Z
_version_ 1850412130581348352