Abelian doppelsemigroups

A doppelsemigroup is an algebraic system consisting of a set with two binary associative operations satisfying certain identities.  Doppelsemigroups are a generalization of semigroups and they have relationships with such algebraic structures as doppelalgebras, duplexes, interassociative semigroups,...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Zhuchok, Anatolii V., Knauer, Kolja
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2019
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1249
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:A doppelsemigroup is an algebraic system consisting of a set with two binary associative operations satisfying certain identities.  Doppelsemigroups are a generalization of semigroups and they have relationships with such algebraic structures as doppelalgebras, duplexes, interassociative semigroups, restrictive bisemigroups, dimonoids and trioids. This paper is devoted to the study of abelian doppelsemigroups. We show that every abelian doppelsemigroup can be constructed from a left and right commutative semigroup and describe the free abelian doppelsemigroup. We also characterize the least abelian congruence on the free doppelsemigroup, give examples of abelian doppelsemigroups and find conditions under which the operations of an abelian doppelsemigroup coincide.