Rad-supplements in injective modules
We introduce and study the notion of $Rad$-s-injective modules (i.e. modules which are $Rad$-supplements in their injective hulls). We compare this notion with another generalization of injective modules. We show that the class of $Rad$-s-injective modules is closed under finite direct sums. We char...
Збережено в:
| Дата: | 2016 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2016
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/125 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | We introduce and study the notion of $Rad$-s-injective modules (i.e. modules
which are $Rad$-supplements in their injective hulls). We compare this notion
with another generalization of injective modules. We show that the class of
$Rad$-s-injective modules is closed under finite direct sums. We characterize
$Rad$-s-injective modules over several type of rings, including semilocal rings,
left hereditary rings and left Harada rings. |
|---|