Groups whose lattices of normal subgroups are factorial

We prove that the groups \(G\) for which the lattice of normal subgroups \(\mathcal{N}(G)\) is factorial are exactly the UND-groups, that is the groups for which every normal subgroup have a unique normal complement, with finite length.

Збережено в:
Бібліографічні деталі
Дата:2021
Автор: Rajhi, A.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2021
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1264
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543334557810688
author Rajhi, A.
author_facet Rajhi, A.
author_sort Rajhi, A.
baseUrl_str
collection OJS
datestamp_date 2021-01-29T09:38:49Z
description We prove that the groups \(G\) for which the lattice of normal subgroups \(\mathcal{N}(G)\) is factorial are exactly the UND-groups, that is the groups for which every normal subgroup have a unique normal complement, with finite length.
first_indexed 2026-02-08T08:01:35Z
format Article
id admjournalluguniveduua-article-1264
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T08:01:35Z
publishDate 2021
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-12642021-01-29T09:38:49Z Groups whose lattices of normal subgroups are factorial Rajhi, A. lattice of normal subgroups, semilattices, idempotent monoids, partial monoids 20E99, 06B99 We prove that the groups \(G\) for which the lattice of normal subgroups \(\mathcal{N}(G)\) is factorial are exactly the UND-groups, that is the groups for which every normal subgroup have a unique normal complement, with finite length. Lugansk National Taras Shevchenko University 2021-01-29 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1264 10.12958/adm1264 Algebra and Discrete Mathematics; Vol 30, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1264/pdf Copyright (c) 2021 Algebra and Discrete Mathematics
spellingShingle lattice of normal subgroups
semilattices
idempotent monoids
partial monoids
20E99
06B99
Rajhi, A.
Groups whose lattices of normal subgroups are factorial
title Groups whose lattices of normal subgroups are factorial
title_full Groups whose lattices of normal subgroups are factorial
title_fullStr Groups whose lattices of normal subgroups are factorial
title_full_unstemmed Groups whose lattices of normal subgroups are factorial
title_short Groups whose lattices of normal subgroups are factorial
title_sort groups whose lattices of normal subgroups are factorial
topic lattice of normal subgroups
semilattices
idempotent monoids
partial monoids
20E99
06B99
topic_facet lattice of normal subgroups
semilattices
idempotent monoids
partial monoids
20E99
06B99
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1264
work_keys_str_mv AT rajhia groupswhoselatticesofnormalsubgroupsarefactorial