A horizontal mesh algorithm for posets with positive Tits form

Following our paper [Fund. Inform. 136 (2015), 345--379],  we define a~horizontal mesh algorithm that constructsa~$\widehat{\Phi}_I$-mesh translation quiver  $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ consisting of$\widehat{\Phi}_I$-orbits of the finite set $\widehat{\CR}_I=\{v\in\mathbb{Z}^I\; ;\;\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Kaniecki, Mariusz, Kosakowska, Justyna, Malicki, Piotr, Marczak, Grzegorz
Format: Artikel
Sprache:Englisch
Veröffentlicht: Lugansk National Taras Shevchenko University 2016
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/130
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543335147110400
author Kaniecki, Mariusz
Kosakowska, Justyna
Malicki, Piotr
Marczak, Grzegorz
author_facet Kaniecki, Mariusz
Kosakowska, Justyna
Malicki, Piotr
Marczak, Grzegorz
author_sort Kaniecki, Mariusz
baseUrl_str
collection OJS
datestamp_date 2016-12-30T22:42:45Z
description Following our paper [Fund. Inform. 136 (2015), 345--379],  we define a~horizontal mesh algorithm that constructsa~$\widehat{\Phi}_I$-mesh translation quiver  $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ consisting of$\widehat{\Phi}_I$-orbits of the finite set $\widehat{\CR}_I=\{v\in\mathbb{Z}^I\; ;\;\widehat{q}_I(v)=1\}$ of Tits roots of  a~poset $I$ with positivedefinite Tits quadratic form  $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$. Under the assumption that  $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$ is positive definite,  the algorithm constructs $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ such that it is isomorphic with the $\widehat{\Phi}_D$-mesh translation quiver  $\Gamma({\CR}_D,{\Phi}_D)$ of  $\widehat{\Phi}_D$-orbits of the finite set ${\CR}_D$ of roots  of a simply laced Dynkin quiver $D$ associated with $I$.
first_indexed 2026-02-08T08:01:35Z
format Article
id admjournalluguniveduua-article-130
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T08:01:35Z
publishDate 2016
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-1302016-12-30T22:42:45Z A horizontal mesh algorithm for posets with positive Tits form Kaniecki, Mariusz Kosakowska, Justyna Malicki, Piotr Marczak, Grzegorz poset; combinatorial algorithm; Dynkin diagram; mesh geometry of roots; quadratic form 68R10; 05C50; 06A07; 15A63 Following our paper [Fund. Inform. 136 (2015), 345--379],  we define a~horizontal mesh algorithm that constructsa~$\widehat{\Phi}_I$-mesh translation quiver  $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ consisting of$\widehat{\Phi}_I$-orbits of the finite set $\widehat{\CR}_I=\{v\in\mathbb{Z}^I\; ;\;\widehat{q}_I(v)=1\}$ of Tits roots of  a~poset $I$ with positivedefinite Tits quadratic form  $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$. Under the assumption that  $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$ is positive definite,  the algorithm constructs $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ such that it is isomorphic with the $\widehat{\Phi}_D$-mesh translation quiver  $\Gamma({\CR}_D,{\Phi}_D)$ of  $\widehat{\Phi}_D$-orbits of the finite set ${\CR}_D$ of roots  of a simply laced Dynkin quiver $D$ associated with $I$. Lugansk National Taras Shevchenko University 2016-12-31 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/130 Algebra and Discrete Mathematics; Vol 22, No 2 (2016) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/130/pdf Copyright (c) 2016 Algebra and Discrete Mathematics
spellingShingle poset
combinatorial algorithm
Dynkin diagram
mesh geometry of roots
quadratic form
68R10
05C50
06A07
15A63
Kaniecki, Mariusz
Kosakowska, Justyna
Malicki, Piotr
Marczak, Grzegorz
A horizontal mesh algorithm for posets with positive Tits form
title A horizontal mesh algorithm for posets with positive Tits form
title_full A horizontal mesh algorithm for posets with positive Tits form
title_fullStr A horizontal mesh algorithm for posets with positive Tits form
title_full_unstemmed A horizontal mesh algorithm for posets with positive Tits form
title_short A horizontal mesh algorithm for posets with positive Tits form
title_sort horizontal mesh algorithm for posets with positive tits form
topic poset
combinatorial algorithm
Dynkin diagram
mesh geometry of roots
quadratic form
68R10
05C50
06A07
15A63
topic_facet poset
combinatorial algorithm
Dynkin diagram
mesh geometry of roots
quadratic form
68R10
05C50
06A07
15A63
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/130
work_keys_str_mv AT kanieckimariusz ahorizontalmeshalgorithmforposetswithpositivetitsform
AT kosakowskajustyna ahorizontalmeshalgorithmforposetswithpositivetitsform
AT malickipiotr ahorizontalmeshalgorithmforposetswithpositivetitsform
AT marczakgrzegorz ahorizontalmeshalgorithmforposetswithpositivetitsform
AT kanieckimariusz horizontalmeshalgorithmforposetswithpositivetitsform
AT kosakowskajustyna horizontalmeshalgorithmforposetswithpositivetitsform
AT malickipiotr horizontalmeshalgorithmforposetswithpositivetitsform
AT marczakgrzegorz horizontalmeshalgorithmforposetswithpositivetitsform