On invariants of polynomial functions, II
Let \(P\) be a finite partially ordered set. In our previous paper, we defined the sectional geometric genus \(g_{i}(P)\) of \(P\) and studied \(g_{i}(P)\). In this paper, by using this sectional geometric genus of \(P\), we will give a criterion about the case in which \(P\) has no order.
Збережено в:
| Дата: | 2021 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | Англійська |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2021
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1319 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| _version_ | 1856543132868411392 |
|---|---|
| author | Fukuma, Y. |
| author_facet | Fukuma, Y. |
| author_sort | Fukuma, Y. |
| baseUrl_str | |
| collection | OJS |
| datestamp_date | 2021-04-11T06:11:31Z |
| description | Let \(P\) be a finite partially ordered set. In our previous paper, we defined the sectional geometric genus \(g_{i}(P)\) of \(P\) and studied \(g_{i}(P)\). In this paper, by using this sectional geometric genus of \(P\), we will give a criterion about the case in which \(P\) has no order. |
| first_indexed | 2026-02-08T07:57:37Z |
| format | Article |
| id | admjournalluguniveduua-article-1319 |
| institution | Algebra and Discrete Mathematics |
| language | English |
| last_indexed | 2026-02-08T07:57:37Z |
| publishDate | 2021 |
| publisher | Lugansk National Taras Shevchenko University |
| record_format | ojs |
| spelling | admjournalluguniveduua-article-13192021-04-11T06:11:31Z On invariants of polynomial functions, II Fukuma, Y. partially ordered set, order polynomial, polynomial function, sectional geometric genus 05A10, 05A15, 06A06 Let \(P\) be a finite partially ordered set. In our previous paper, we defined the sectional geometric genus \(g_{i}(P)\) of \(P\) and studied \(g_{i}(P)\). In this paper, by using this sectional geometric genus of \(P\), we will give a criterion about the case in which \(P\) has no order. Lugansk National Taras Shevchenko University 2021-04-10 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1319 10.12958/adm1319 Algebra and Discrete Mathematics; Vol 31, No 1 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1319/pdf Copyright (c) 2021 Algebra and Discrete Mathematics |
| spellingShingle | partially ordered set order polynomial polynomial function sectional geometric genus 05A10 05A15 06A06 Fukuma, Y. On invariants of polynomial functions, II |
| title | On invariants of polynomial functions, II |
| title_full | On invariants of polynomial functions, II |
| title_fullStr | On invariants of polynomial functions, II |
| title_full_unstemmed | On invariants of polynomial functions, II |
| title_short | On invariants of polynomial functions, II |
| title_sort | on invariants of polynomial functions, ii |
| topic | partially ordered set order polynomial polynomial function sectional geometric genus 05A10 05A15 06A06 |
| topic_facet | partially ordered set order polynomial polynomial function sectional geometric genus 05A10 05A15 06A06 |
| url | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1319 |
| work_keys_str_mv | AT fukumay oninvariantsofpolynomialfunctionsii |