Common neighborhood spectrum of commuting graphs of finite groups

The commuting graph of a finite non-abelian group \(G\) with center \(Z(G)\), denoted by \(\Gamma_c(G)\), is a simple undirected graph whose vertex set is \(G\setminus Z(G)\), and two distinct vertices \(x\) and \(y\) are adjacent if and only if \(xy = yx\). In this paper, we compute the common neig...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Fasfous, W. N. T., Sharafdini, R., Nath, R. K.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2021
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1332
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1332
record_format ojs
spelling admjournalluguniveduua-article-13322021-11-09T03:53:16Z Common neighborhood spectrum of commuting graphs of finite groups Fasfous, W. N. T. Sharafdini, R. Nath, R. K. commuting graph, spectrum, integral graph, finite group 05C50, 15A18, 05C25, 20D99 The commuting graph of a finite non-abelian group \(G\) with center \(Z(G)\), denoted by \(\Gamma_c(G)\), is a simple undirected graph whose vertex set is \(G\setminus Z(G)\), and two distinct vertices \(x\) and \(y\) are adjacent if and only if \(xy = yx\). In this paper, we compute the common neighborhood spectrum of commuting graphs of several classes of finite non-abelian groups and conclude that these graphs are CN-integral. Lugansk National Taras Shevchenko University 2021-11-09 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1332 10.12958/adm1332 Algebra and Discrete Mathematics; Vol 32, No 1 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1332/pdf Copyright (c) 2021 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2021-11-09T03:53:16Z
collection OJS
language English
topic commuting graph
spectrum
integral graph
finite group
05C50
15A18
05C25
20D99
spellingShingle commuting graph
spectrum
integral graph
finite group
05C50
15A18
05C25
20D99
Fasfous, W. N. T.
Sharafdini, R.
Nath, R. K.
Common neighborhood spectrum of commuting graphs of finite groups
topic_facet commuting graph
spectrum
integral graph
finite group
05C50
15A18
05C25
20D99
format Article
author Fasfous, W. N. T.
Sharafdini, R.
Nath, R. K.
author_facet Fasfous, W. N. T.
Sharafdini, R.
Nath, R. K.
author_sort Fasfous, W. N. T.
title Common neighborhood spectrum of commuting graphs of finite groups
title_short Common neighborhood spectrum of commuting graphs of finite groups
title_full Common neighborhood spectrum of commuting graphs of finite groups
title_fullStr Common neighborhood spectrum of commuting graphs of finite groups
title_full_unstemmed Common neighborhood spectrum of commuting graphs of finite groups
title_sort common neighborhood spectrum of commuting graphs of finite groups
description The commuting graph of a finite non-abelian group \(G\) with center \(Z(G)\), denoted by \(\Gamma_c(G)\), is a simple undirected graph whose vertex set is \(G\setminus Z(G)\), and two distinct vertices \(x\) and \(y\) are adjacent if and only if \(xy = yx\). In this paper, we compute the common neighborhood spectrum of commuting graphs of several classes of finite non-abelian groups and conclude that these graphs are CN-integral.
publisher Lugansk National Taras Shevchenko University
publishDate 2021
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1332
work_keys_str_mv AT fasfouswnt commonneighborhoodspectrumofcommutinggraphsoffinitegroups
AT sharafdinir commonneighborhoodspectrumofcommutinggraphsoffinitegroups
AT nathrk commonneighborhoodspectrumofcommutinggraphsoffinitegroups
first_indexed 2025-12-02T15:25:20Z
last_indexed 2025-12-02T15:25:20Z
_version_ 1850411841997504512