On hereditary reducibility of 2-monomial matrices over commutative rings

A 2-monomial matrix over a commutative ring \(R\) is by definition any matrix of the form \(M(t,k,n)=\Phi\left(\begin{smallmatrix}I_k&0\\0&tI_{n-k}\end{smallmatrix}\right)\), \(0<k<n\), where \(t\) is a non-invertible element of \(R\), \(\Phi\) the companion matrix to \...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Bondarenko, Vitaliy M., Gildea, Joseph, Tylyshchak, Alexander A., Yurchenko, Natalia V.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2019
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1333
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543027832553472
author Bondarenko, Vitaliy M.
Gildea, Joseph
Tylyshchak, Alexander A.
Yurchenko, Natalia V.
author_facet Bondarenko, Vitaliy M.
Gildea, Joseph
Tylyshchak, Alexander A.
Yurchenko, Natalia V.
author_sort Bondarenko, Vitaliy M.
baseUrl_str
collection OJS
datestamp_date 2019-04-09T04:55:37Z
description A 2-monomial matrix over a commutative ring \(R\) is by definition any matrix of the form \(M(t,k,n)=\Phi\left(\begin{smallmatrix}I_k&0\\0&tI_{n-k}\end{smallmatrix}\right)\), \(0<k<n\), where \(t\) is a non-invertible element of \(R\), \(\Phi\) the companion matrix to \(\lambda^n-1\) and \(I_k\)  the identity \(k\times k\)-matrix. In this paper we introduce the notion of hereditary reducibility (for these matrices) and indicate one general condition of the introduced reducibility.
first_indexed 2025-12-02T15:38:43Z
format Article
id admjournalluguniveduua-article-1333
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:38:43Z
publishDate 2019
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-13332019-04-09T04:55:37Z On hereditary reducibility of 2-monomial matrices over commutative rings Bondarenko, Vitaliy M. Gildea, Joseph Tylyshchak, Alexander A. Yurchenko, Natalia V. commutative ring, Jacobson radical, 2-monomial matrix, hereditary reducible matrix, similarity, linear operator, free module 15B33, 15A30 A 2-monomial matrix over a commutative ring \(R\) is by definition any matrix of the form \(M(t,k,n)=\Phi\left(\begin{smallmatrix}I_k&0\\0&tI_{n-k}\end{smallmatrix}\right)\), \(0<k<n\), where \(t\) is a non-invertible element of \(R\), \(\Phi\) the companion matrix to \(\lambda^n-1\) and \(I_k\)  the identity \(k\times k\)-matrix. In this paper we introduce the notion of hereditary reducibility (for these matrices) and indicate one general condition of the introduced reducibility. Lugansk National Taras Shevchenko University 2019-03-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1333 Algebra and Discrete Mathematics; Vol 27, No 1 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1333/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1333/499 Copyright (c) 2019 Algebra and Discrete Mathematics
spellingShingle commutative ring
Jacobson radical
2-monomial matrix
hereditary reducible matrix
similarity
linear operator
free module
15B33
15A30
Bondarenko, Vitaliy M.
Gildea, Joseph
Tylyshchak, Alexander A.
Yurchenko, Natalia V.
On hereditary reducibility of 2-monomial matrices over commutative rings
title On hereditary reducibility of 2-monomial matrices over commutative rings
title_full On hereditary reducibility of 2-monomial matrices over commutative rings
title_fullStr On hereditary reducibility of 2-monomial matrices over commutative rings
title_full_unstemmed On hereditary reducibility of 2-monomial matrices over commutative rings
title_short On hereditary reducibility of 2-monomial matrices over commutative rings
title_sort on hereditary reducibility of 2-monomial matrices over commutative rings
topic commutative ring
Jacobson radical
2-monomial matrix
hereditary reducible matrix
similarity
linear operator
free module
15B33
15A30
topic_facet commutative ring
Jacobson radical
2-monomial matrix
hereditary reducible matrix
similarity
linear operator
free module
15B33
15A30
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1333
work_keys_str_mv AT bondarenkovitaliym onhereditaryreducibilityof2monomialmatricesovercommutativerings
AT gildeajoseph onhereditaryreducibilityof2monomialmatricesovercommutativerings
AT tylyshchakalexandera onhereditaryreducibilityof2monomialmatricesovercommutativerings
AT yurchenkonataliav onhereditaryreducibilityof2monomialmatricesovercommutativerings