The center of the wreath product of symmetric group algebras

We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Far...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автор: Tout, O.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2021
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1338
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543291833581568
author Tout, O.
author_facet Tout, O.
author_sort Tout, O.
baseUrl_str
collection OJS
datestamp_date 2021-07-19T08:39:30Z
description We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Farahat and Higman about the polynomiality of the structure coefficients of the center of the symmetric group algebra and to generalize our recent result about the polynomiality property of the structure coefficients of the center of the hyperoctahedral group algebra.
first_indexed 2025-12-02T15:25:23Z
format Article
id admjournalluguniveduua-article-1338
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:25:23Z
publishDate 2021
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-13382021-07-19T08:39:30Z The center of the wreath product of symmetric group algebras Tout, O. symmetric groups, wreath products, structure coefficients, centers of finite groups algebras 05E10, 05E16, 20C30 We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Farahat and Higman about the polynomiality of the structure coefficients of the center of the symmetric group algebra and to generalize our recent result about the polynomiality property of the structure coefficients of the center of the hyperoctahedral group algebra. Lugansk National Taras Shevchenko University 2021-07-19 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1338 10.12958/adm1338 Algebra and Discrete Mathematics; Vol 31, No 2 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1338/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1338/874 Copyright (c) 2021 Algebra and Discrete Mathematics
spellingShingle symmetric groups
wreath products
structure coefficients
centers of finite groups algebras
05E10
05E16
20C30
Tout, O.
The center of the wreath product of symmetric group algebras
title The center of the wreath product of symmetric group algebras
title_full The center of the wreath product of symmetric group algebras
title_fullStr The center of the wreath product of symmetric group algebras
title_full_unstemmed The center of the wreath product of symmetric group algebras
title_short The center of the wreath product of symmetric group algebras
title_sort center of the wreath product of symmetric group algebras
topic symmetric groups
wreath products
structure coefficients
centers of finite groups algebras
05E10
05E16
20C30
topic_facet symmetric groups
wreath products
structure coefficients
centers of finite groups algebras
05E10
05E16
20C30
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1338
work_keys_str_mv AT touto thecenterofthewreathproductofsymmetricgroupalgebras
AT touto centerofthewreathproductofsymmetricgroupalgebras