On the non–periodic groups, whose subgroups of infinite special rank are transitively normal

This paper devoted to the non-periodic locally generalized radical groups, whose subgroups of infinite special rank are transitively normal. We proved that if such a~group \(G\) includes an ascendant locally nilpotent subgroup of infinite special rank, then \(G\) is abelian.

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Kurdachenko, L. A., Subbotin, I. Ya., Velychko, T. V.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1357
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543238344671232
author Kurdachenko, L. A.
Subbotin, I. Ya.
Velychko, T. V.
author_facet Kurdachenko, L. A.
Subbotin, I. Ya.
Velychko, T. V.
author_sort Kurdachenko, L. A.
baseUrl_str
collection OJS
datestamp_date 2020-05-14T18:27:22Z
description This paper devoted to the non-periodic locally generalized radical groups, whose subgroups of infinite special rank are transitively normal. We proved that if such a~group \(G\) includes an ascendant locally nilpotent subgroup of infinite special rank, then \(G\) is abelian.
first_indexed 2025-12-02T15:29:59Z
format Article
id admjournalluguniveduua-article-1357
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:29:59Z
publishDate 2020
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-13572020-05-14T18:27:22Z On the non–periodic groups, whose subgroups of infinite special rank are transitively normal Kurdachenko, L. A. Subbotin, I. Ya. Velychko, T. V. finite special rank, soluble group, periodic group, locally nilpotent radical, locally nilpotent residual, transitively normal subgroups Primary 20E15, 20F16; Secondary 20E25, 20E34, 20F22, 20F50 This paper devoted to the non-periodic locally generalized radical groups, whose subgroups of infinite special rank are transitively normal. We proved that if such a~group \(G\) includes an ascendant locally nilpotent subgroup of infinite special rank, then \(G\) is abelian. Lugansk National Taras Shevchenko University 2020-05-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1357 10.12958/adm1357 Algebra and Discrete Mathematics; Vol 29, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1357/pdf Copyright (c) 2020 Algebra and Discrete Mathematics
spellingShingle finite special rank
soluble group
periodic group
locally nilpotent radical
locally nilpotent residual
transitively normal subgroups
Primary 20E15
20F16; Secondary 20E25
20E34
20F22
20F50
Kurdachenko, L. A.
Subbotin, I. Ya.
Velychko, T. V.
On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
title On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
title_full On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
title_fullStr On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
title_full_unstemmed On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
title_short On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
title_sort on the non–periodic groups, whose subgroups of infinite special rank are transitively normal
topic finite special rank
soluble group
periodic group
locally nilpotent radical
locally nilpotent residual
transitively normal subgroups
Primary 20E15
20F16; Secondary 20E25
20E34
20F22
20F50
topic_facet finite special rank
soluble group
periodic group
locally nilpotent radical
locally nilpotent residual
transitively normal subgroups
Primary 20E15
20F16; Secondary 20E25
20E34
20F22
20F50
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1357
work_keys_str_mv AT kurdachenkola onthenonperiodicgroupswhosesubgroupsofinfinitespecialrankaretransitivelynormal
AT subbotiniya onthenonperiodicgroupswhosesubgroupsofinfinitespecialrankaretransitivelynormal
AT velychkotv onthenonperiodicgroupswhosesubgroupsofinfinitespecialrankaretransitivelynormal