Finite groups with semi-subnormal Schmidt subgroups

A Schmidt group is a non-nilpotent group in which every proper subgroup is nilpotent. A subgroup \(A\) of a group \(G\) is semi-normal in \(G\) if there exists a subgroup \(B\) of \(G\) such that \(G=AB\) and \(AB_1\) is a proper subgroup of \(G\) for every proper subgroup \(B_1\) of \(B\). If \(A\)...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Kniahina, V. N., Monakhov, V. S.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1376
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1376
record_format ojs
spelling admjournalluguniveduua-article-13762020-05-14T18:27:22Z Finite groups with semi-subnormal Schmidt subgroups Kniahina, V. N. Monakhov, V. S. finite soluble group, Schmidt subgroup, semi-normal subgroup, subnormal subgroup 20E28, 20E32, 20E34 A Schmidt group is a non-nilpotent group in which every proper subgroup is nilpotent. A subgroup \(A\) of a group \(G\) is semi-normal in \(G\) if there exists a subgroup \(B\) of \(G\) such that \(G=AB\) and \(AB_1\) is a proper subgroup of \(G\) for every proper subgroup \(B_1\) of \(B\). If \(A\) is either subnormal in \(G\) or is semi-normal in \(G\), then \(A\) is called a semi-subnormal subgroup of \(G\). In this paper, we establish that a group \(G\) with semi-subnormal Schmidt \(\{2,3\}\)-subgroups is \(3\)-soluble. Moreover, if all 5-closed Schmidt \(\{2,5 \}\)-subgroups are semi-subnormal in \(G\), then \(G\) is soluble. We prove that a group with semi-subnormal Schmidt subgroups is metanilpotent. Lugansk National Taras Shevchenko University 2020-05-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1376 10.12958/adm1376 Algebra and Discrete Mathematics; Vol 29, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1376/pdf Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2020-05-14T18:27:22Z
collection OJS
language English
topic finite soluble group
Schmidt subgroup
semi-normal subgroup
subnormal subgroup
20E28
20E32
20E34
spellingShingle finite soluble group
Schmidt subgroup
semi-normal subgroup
subnormal subgroup
20E28
20E32
20E34
Kniahina, V. N.
Monakhov, V. S.
Finite groups with semi-subnormal Schmidt subgroups
topic_facet finite soluble group
Schmidt subgroup
semi-normal subgroup
subnormal subgroup
20E28
20E32
20E34
format Article
author Kniahina, V. N.
Monakhov, V. S.
author_facet Kniahina, V. N.
Monakhov, V. S.
author_sort Kniahina, V. N.
title Finite groups with semi-subnormal Schmidt subgroups
title_short Finite groups with semi-subnormal Schmidt subgroups
title_full Finite groups with semi-subnormal Schmidt subgroups
title_fullStr Finite groups with semi-subnormal Schmidt subgroups
title_full_unstemmed Finite groups with semi-subnormal Schmidt subgroups
title_sort finite groups with semi-subnormal schmidt subgroups
description A Schmidt group is a non-nilpotent group in which every proper subgroup is nilpotent. A subgroup \(A\) of a group \(G\) is semi-normal in \(G\) if there exists a subgroup \(B\) of \(G\) such that \(G=AB\) and \(AB_1\) is a proper subgroup of \(G\) for every proper subgroup \(B_1\) of \(B\). If \(A\) is either subnormal in \(G\) or is semi-normal in \(G\), then \(A\) is called a semi-subnormal subgroup of \(G\). In this paper, we establish that a group \(G\) with semi-subnormal Schmidt \(\{2,3\}\)-subgroups is \(3\)-soluble. Moreover, if all 5-closed Schmidt \(\{2,5 \}\)-subgroups are semi-subnormal in \(G\), then \(G\) is soluble. We prove that a group with semi-subnormal Schmidt subgroups is metanilpotent.
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1376
work_keys_str_mv AT kniahinavn finitegroupswithsemisubnormalschmidtsubgroups
AT monakhovvs finitegroupswithsemisubnormalschmidtsubgroups
first_indexed 2025-12-02T15:38:49Z
last_indexed 2025-12-02T15:38:49Z
_version_ 1850411507279462400