The classification of serial posets with the non-negative quadratic Tits form being principal

Using (introduced by the first author) the method of (min, max)-equivalence, we classify all  serial  principal posets, i.e. the posets \(S\) satisfying the following conditions: (1) the quadratic Tits form \(q_S(z)\colon\mathbb{Z}^{|S|+1}\to\mathbb{Z}\) of  \(S\) is non-negative; (2) \({\rm Ker}\,q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Bondarenko, Vitaliy M., Styopochkina, Marina V.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2019
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1393
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1393
record_format ojs
spelling admjournalluguniveduua-article-13932019-07-14T19:54:06Z The classification of serial posets with the non-negative quadratic Tits form being principal Bondarenko, Vitaliy M. Styopochkina, Marina V. quiver, serial poset, principal poset, quadratic Tits form, semichain, minimax equivalence, one-side and two-side sums, minimax sum 15B33, 15A30 Using (introduced by the first author) the method of (min, max)-equivalence, we classify all  serial  principal posets, i.e. the posets \(S\) satisfying the following conditions: (1) the quadratic Tits form \(q_S(z)\colon\mathbb{Z}^{|S|+1}\to\mathbb{Z}\) of  \(S\) is non-negative; (2) \({\rm Ker}\,q_S(z):=\{t\,|\, q_S(t)=0\}\) is an infinite cyclic group (equivalently, the corank of the symmetric matrix of \(q_S(z)\) is equal to \(1\)); (3) for any \(m\in\mathbb{N}\), there is a poset \(S(m)\supset S\)  such that \(S(m)\) satisfies  (1), (2) and \(|S(m)\setminus S|=m\). Lugansk National Taras Shevchenko University 2019-07-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1393 Algebra and Discrete Mathematics; Vol 27, No 2 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1393/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1393/533 Copyright (c) 2019 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2019-07-14T19:54:06Z
collection OJS
language English
topic quiver
serial poset
principal poset
quadratic Tits form
semichain
minimax equivalence
one-side and two-side sums
minimax sum
15B33
15A30
spellingShingle quiver
serial poset
principal poset
quadratic Tits form
semichain
minimax equivalence
one-side and two-side sums
minimax sum
15B33
15A30
Bondarenko, Vitaliy M.
Styopochkina, Marina V.
The classification of serial posets with the non-negative quadratic Tits form being principal
topic_facet quiver
serial poset
principal poset
quadratic Tits form
semichain
minimax equivalence
one-side and two-side sums
minimax sum
15B33
15A30
format Article
author Bondarenko, Vitaliy M.
Styopochkina, Marina V.
author_facet Bondarenko, Vitaliy M.
Styopochkina, Marina V.
author_sort Bondarenko, Vitaliy M.
title The classification of serial posets with the non-negative quadratic Tits form being principal
title_short The classification of serial posets with the non-negative quadratic Tits form being principal
title_full The classification of serial posets with the non-negative quadratic Tits form being principal
title_fullStr The classification of serial posets with the non-negative quadratic Tits form being principal
title_full_unstemmed The classification of serial posets with the non-negative quadratic Tits form being principal
title_sort classification of serial posets with the non-negative quadratic tits form being principal
description Using (introduced by the first author) the method of (min, max)-equivalence, we classify all  serial  principal posets, i.e. the posets \(S\) satisfying the following conditions: (1) the quadratic Tits form \(q_S(z)\colon\mathbb{Z}^{|S|+1}\to\mathbb{Z}\) of  \(S\) is non-negative; (2) \({\rm Ker}\,q_S(z):=\{t\,|\, q_S(t)=0\}\) is an infinite cyclic group (equivalently, the corank of the symmetric matrix of \(q_S(z)\) is equal to \(1\)); (3) for any \(m\in\mathbb{N}\), there is a poset \(S(m)\supset S\)  such that \(S(m)\) satisfies  (1), (2) and \(|S(m)\setminus S|=m\).
publisher Lugansk National Taras Shevchenko University
publishDate 2019
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1393
work_keys_str_mv AT bondarenkovitaliym theclassificationofserialposetswiththenonnegativequadratictitsformbeingprincipal
AT styopochkinamarinav theclassificationofserialposetswiththenonnegativequadratictitsformbeingprincipal
AT bondarenkovitaliym classificationofserialposetswiththenonnegativequadratictitsformbeingprincipal
AT styopochkinamarinav classificationofserialposetswiththenonnegativequadratictitsformbeingprincipal
first_indexed 2025-12-02T15:38:50Z
last_indexed 2025-12-02T15:38:50Z
_version_ 1850412133756436480