Clean coalgebras and clean comodules of finitely generated projective modules

Let \(R\) be a commutative ring with multiplicative identity and \(P\) is a finitely generated projective \(R\)-module. If \(P^{\ast}\) is the set of \(R\)-module homomorphism from \(P\) to \(R\), then the tensor product \(P^{\ast}\otimes_{R}P\) can be considered as an \(R\)-coalgebra. Furthermore,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2021
Hauptverfasser: Puspita, N. P., Wijayanti, I. E., Surodjo, B.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2021
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1415
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1415
record_format ojs
spelling admjournalluguniveduua-article-14152021-07-19T08:39:30Z Clean coalgebras and clean comodules of finitely generated projective modules Puspita, N. P. Wijayanti, I. E. Surodjo, B. clean coalgebra, clean comodule, finitely generated projective module, Morita context 16T15, 16D90, 16D40 Let \(R\) be a commutative ring with multiplicative identity and \(P\) is a finitely generated projective \(R\)-module. If \(P^{\ast}\) is the set of \(R\)-module homomorphism from \(P\) to \(R\), then the tensor product \(P^{\ast}\otimes_{R}P\) can be considered as an \(R\)-coalgebra. Furthermore, \(P\) and \(P^{\ast}\) is a comodule over coalgebra \(P^{\ast}\otimes_{R}P\). Using the Morita context, this paper give sufficient conditions of clean coalgebra \(P^{\ast}\otimes_{R}P\) and clean \(P^{\ast}\otimes_{R}P\)-comodule \(P\) and \(P^{\ast}\). These sufficient conditions are determined by the conditions of module \(P\) and ring \(R\). Lugansk National Taras Shevchenko University 2021-07-19 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1415 10.12958/adm1415 Algebra and Discrete Mathematics; Vol 31, No 2 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1415/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1415/555 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1415/873 Copyright (c) 2021 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2021-07-19T08:39:30Z
collection OJS
language English
topic clean coalgebra
clean comodule
finitely generated projective module
Morita context
16T15
16D90
16D40
spellingShingle clean coalgebra
clean comodule
finitely generated projective module
Morita context
16T15
16D90
16D40
Puspita, N. P.
Wijayanti, I. E.
Surodjo, B.
Clean coalgebras and clean comodules of finitely generated projective modules
topic_facet clean coalgebra
clean comodule
finitely generated projective module
Morita context
16T15
16D90
16D40
format Article
author Puspita, N. P.
Wijayanti, I. E.
Surodjo, B.
author_facet Puspita, N. P.
Wijayanti, I. E.
Surodjo, B.
author_sort Puspita, N. P.
title Clean coalgebras and clean comodules of finitely generated projective modules
title_short Clean coalgebras and clean comodules of finitely generated projective modules
title_full Clean coalgebras and clean comodules of finitely generated projective modules
title_fullStr Clean coalgebras and clean comodules of finitely generated projective modules
title_full_unstemmed Clean coalgebras and clean comodules of finitely generated projective modules
title_sort clean coalgebras and clean comodules of finitely generated projective modules
description Let \(R\) be a commutative ring with multiplicative identity and \(P\) is a finitely generated projective \(R\)-module. If \(P^{\ast}\) is the set of \(R\)-module homomorphism from \(P\) to \(R\), then the tensor product \(P^{\ast}\otimes_{R}P\) can be considered as an \(R\)-coalgebra. Furthermore, \(P\) and \(P^{\ast}\) is a comodule over coalgebra \(P^{\ast}\otimes_{R}P\). Using the Morita context, this paper give sufficient conditions of clean coalgebra \(P^{\ast}\otimes_{R}P\) and clean \(P^{\ast}\otimes_{R}P\)-comodule \(P\) and \(P^{\ast}\). These sufficient conditions are determined by the conditions of module \(P\) and ring \(R\).
publisher Lugansk National Taras Shevchenko University
publishDate 2021
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1415
work_keys_str_mv AT puspitanp cleancoalgebrasandcleancomodulesoffinitelygeneratedprojectivemodules
AT wijayantiie cleancoalgebrasandcleancomodulesoffinitelygeneratedprojectivemodules
AT surodjob cleancoalgebrasandcleancomodulesoffinitelygeneratedprojectivemodules
first_indexed 2025-12-02T15:42:10Z
last_indexed 2025-12-02T15:42:10Z
_version_ 1850411718339985408