Cancellation ideals of a ring extension

We study properties of cancellation ideals of ring extensions. Let \(R \subseteq S\) be a ring extension. A nonzero \(S\)-regular ideal \(I\) of \(R\) is called a (quasi)-cancellation ideal of the ring extension \(R \subseteq S\) if whenever \(IB = IC\) for two \(S\)-regular (finitely generated) \(R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2021
1. Verfasser: Tchamna, S.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2021
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1424
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1424
record_format ojs
spelling admjournalluguniveduua-article-14242021-11-09T03:53:16Z Cancellation ideals of a ring extension Tchamna, S. ring extension, cancellation ideal, pullback diagram 13A15, 13A18, 13B02 We study properties of cancellation ideals of ring extensions. Let \(R \subseteq S\) be a ring extension. A nonzero \(S\)-regular ideal \(I\) of \(R\) is called a (quasi)-cancellation ideal of the ring extension \(R \subseteq S\) if whenever \(IB = IC\) for two \(S\)-regular (finitely generated) \(R\)-submodules \(B\) and \(C\) of \(S\), then \(B =C\). We show that a finitely generated ideal \(I\) is a cancellation ideal of the ring extension \(R\subseteq S\) if and only if \(I\) is \(S\)-invertible. Lugansk National Taras Shevchenko University 2021-11-09 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1424 10.12958/adm1424 Algebra and Discrete Mathematics; Vol 32, No 1 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1424/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1424/562 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1424/924 Copyright (c) 2021 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2021-11-09T03:53:16Z
collection OJS
language English
topic ring extension
cancellation ideal
pullback diagram
13A15
13A18
13B02
spellingShingle ring extension
cancellation ideal
pullback diagram
13A15
13A18
13B02
Tchamna, S.
Cancellation ideals of a ring extension
topic_facet ring extension
cancellation ideal
pullback diagram
13A15
13A18
13B02
format Article
author Tchamna, S.
author_facet Tchamna, S.
author_sort Tchamna, S.
title Cancellation ideals of a ring extension
title_short Cancellation ideals of a ring extension
title_full Cancellation ideals of a ring extension
title_fullStr Cancellation ideals of a ring extension
title_full_unstemmed Cancellation ideals of a ring extension
title_sort cancellation ideals of a ring extension
description We study properties of cancellation ideals of ring extensions. Let \(R \subseteq S\) be a ring extension. A nonzero \(S\)-regular ideal \(I\) of \(R\) is called a (quasi)-cancellation ideal of the ring extension \(R \subseteq S\) if whenever \(IB = IC\) for two \(S\)-regular (finitely generated) \(R\)-submodules \(B\) and \(C\) of \(S\), then \(B =C\). We show that a finitely generated ideal \(I\) is a cancellation ideal of the ring extension \(R\subseteq S\) if and only if \(I\) is \(S\)-invertible.
publisher Lugansk National Taras Shevchenko University
publishDate 2021
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1424
work_keys_str_mv AT tchamnas cancellationidealsofaringextension
first_indexed 2025-12-02T15:34:50Z
last_indexed 2025-12-02T15:34:50Z
_version_ 1850411257147949056