On solvable \(Z_3\)-graded alternative algebras
Let \(A=A_0\oplus A_1\oplus A_2\) be an alternative \(Z_3\)-gradedalgebra. The main result of the paper is the following: if \(A_0\) issolvable and the characteristic of the ground field not equal 2,3and 5, then \(A\) is solvable.
Збережено в:
| Дата: | 2016 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2016
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/144 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-144 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-1442016-01-12T07:40:37Z On solvable \(Z_3\)-graded alternative algebras Goncharov, Maxim alternative algebra, solvable algebra, $Z_3$-graded Let \(A=A_0\oplus A_1\oplus A_2\) be an alternative \(Z_3\)-gradedalgebra. The main result of the paper is the following: if \(A_0\) issolvable and the characteristic of the ground field not equal 2,3and 5, then \(A\) is solvable. Lugansk National Taras Shevchenko University 2016-01-12 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/144 Algebra and Discrete Mathematics; Vol 20, No 2 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/144/42 Copyright (c) 2016 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2016-01-12T07:40:37Z |
| collection |
OJS |
| language |
English |
| topic |
alternative algebra solvable algebra $Z_3$-graded |
| spellingShingle |
alternative algebra solvable algebra $Z_3$-graded Goncharov, Maxim On solvable \(Z_3\)-graded alternative algebras |
| topic_facet |
alternative algebra solvable algebra $Z_3$-graded |
| format |
Article |
| author |
Goncharov, Maxim |
| author_facet |
Goncharov, Maxim |
| author_sort |
Goncharov, Maxim |
| title |
On solvable \(Z_3\)-graded alternative algebras |
| title_short |
On solvable \(Z_3\)-graded alternative algebras |
| title_full |
On solvable \(Z_3\)-graded alternative algebras |
| title_fullStr |
On solvable \(Z_3\)-graded alternative algebras |
| title_full_unstemmed |
On solvable \(Z_3\)-graded alternative algebras |
| title_sort |
on solvable \(z_3\)-graded alternative algebras |
| description |
Let \(A=A_0\oplus A_1\oplus A_2\) be an alternative \(Z_3\)-gradedalgebra. The main result of the paper is the following: if \(A_0\) issolvable and the characteristic of the ground field not equal 2,3and 5, then \(A\) is solvable. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2016 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/144 |
| work_keys_str_mv |
AT goncharovmaxim onsolvablez3gradedalternativealgebras |
| first_indexed |
2025-12-02T15:38:56Z |
| last_indexed |
2025-12-02T15:38:56Z |
| _version_ |
1850412136330690560 |