Paley-type graphs of order a product of two distinct primes

In this paper, we initiate the study of Paley-type graphs \(\Gamma_N\) modulo \(N=pq\), where \(p,q\) are distinct primes of the form \(4k+1\). It is shown that \(\Gamma_N\) is an edge-regular, symmetric, Eulerian and Hamiltonian graph. Also, the vertex connectivity, edge connectivity, diameter and...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автор: Das, Angsuman
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2019
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1443
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:In this paper, we initiate the study of Paley-type graphs \(\Gamma_N\) modulo \(N=pq\), where \(p,q\) are distinct primes of the form \(4k+1\). It is shown that \(\Gamma_N\) is an edge-regular, symmetric, Eulerian and Hamiltonian graph. Also, the vertex connectivity, edge connectivity, diameter and girth of \(\Gamma_N\) are studied and their relationship with the forms of \(p\) and \(q\) are discussed. Moreover, we specify the forms of primes for which \(\Gamma_N\) is triangulated or triangle-free and provide some bounds (exact values in some particular cases) for the order of the automorphism group \(\operatorname{Aut}(\Gamma_N)\) of the graph \(\Gamma_N\), the chromatic number, the independence number, and the domination number of \(\Gamma_N\).