Mappings preserving sum of products \(a\circ b+ba^{*}\) on factor von Neumann algebras

Let \(\mathcal{A}\) and \(\mathcal{B}\) be two factor von Neumann algebras. In this paper, we proved that a bijective mapping \(\Phi :\mathcal{A}\rightarrow \mathcal{B}\) satisfies \(\Phi (a\circ b+ba^{*})=\Phi (a)\circ \Phi (b)+\Phi (b)\Phi (a)^{*}\) (where \(\circ \) is the special Jordan product...

Full description

Saved in:
Bibliographic Details
Date:2021
Main Authors: Ferreira, J. C. M., Marietto, M. G. B.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2021
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1482
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1482
record_format ojs
spelling admjournalluguniveduua-article-14822021-04-11T06:11:31Z Mappings preserving sum of products \(a\circ b+ba^{*}\) on factor von Neumann algebras Ferreira, J. C. M. Marietto, M. G. B. \(\ast\)-ring isomorphisms, factor von Neumann algebras 47B48, 46L10 Let \(\mathcal{A}\) and \(\mathcal{B}\) be two factor von Neumann algebras. In this paper, we proved that a bijective mapping \(\Phi :\mathcal{A}\rightarrow \mathcal{B}\) satisfies \(\Phi (a\circ b+ba^{*})=\Phi (a)\circ \Phi (b)+\Phi (b)\Phi (a)^{*}\) (where \(\circ \) is the special Jordan product on \(\mathcal{A}\) and \(\mathcal{B},\) respectively), for all elements \(a,b\in \mathcal{A}\), if and only if \(\Phi \) is a \(\ast \)-ring isomorphism. In particular, if the von Neumann algebras \(\mathcal{A}\) and \(\mathcal{B}\) are type I factors, then \(\Phi \) is a unitary isomorphism or a conjugate unitary isomorphism. Lugansk National Taras Shevchenko University 2021-04-10 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1482 10.12958/adm1482 Algebra and Discrete Mathematics; Vol 31, No 1 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1482/pdf Copyright (c) 2021 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2021-04-11T06:11:31Z
collection OJS
language English
topic \(\ast\)-ring isomorphisms
factor von Neumann algebras
47B48
46L10
spellingShingle \(\ast\)-ring isomorphisms
factor von Neumann algebras
47B48
46L10
Ferreira, J. C. M.
Marietto, M. G. B.
Mappings preserving sum of products \(a\circ b+ba^{*}\) on factor von Neumann algebras
topic_facet \(\ast\)-ring isomorphisms
factor von Neumann algebras
47B48
46L10
format Article
author Ferreira, J. C. M.
Marietto, M. G. B.
author_facet Ferreira, J. C. M.
Marietto, M. G. B.
author_sort Ferreira, J. C. M.
title Mappings preserving sum of products \(a\circ b+ba^{*}\) on factor von Neumann algebras
title_short Mappings preserving sum of products \(a\circ b+ba^{*}\) on factor von Neumann algebras
title_full Mappings preserving sum of products \(a\circ b+ba^{*}\) on factor von Neumann algebras
title_fullStr Mappings preserving sum of products \(a\circ b+ba^{*}\) on factor von Neumann algebras
title_full_unstemmed Mappings preserving sum of products \(a\circ b+ba^{*}\) on factor von Neumann algebras
title_sort mappings preserving sum of products \(a\circ b+ba^{*}\) on factor von neumann algebras
description Let \(\mathcal{A}\) and \(\mathcal{B}\) be two factor von Neumann algebras. In this paper, we proved that a bijective mapping \(\Phi :\mathcal{A}\rightarrow \mathcal{B}\) satisfies \(\Phi (a\circ b+ba^{*})=\Phi (a)\circ \Phi (b)+\Phi (b)\Phi (a)^{*}\) (where \(\circ \) is the special Jordan product on \(\mathcal{A}\) and \(\mathcal{B},\) respectively), for all elements \(a,b\in \mathcal{A}\), if and only if \(\Phi \) is a \(\ast \)-ring isomorphism. In particular, if the von Neumann algebras \(\mathcal{A}\) and \(\mathcal{B}\) are type I factors, then \(\Phi \) is a unitary isomorphism or a conjugate unitary isomorphism.
publisher Lugansk National Taras Shevchenko University
publishDate 2021
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1482
work_keys_str_mv AT ferreirajcm mappingspreservingsumofproductsacircbbaonfactorvonneumannalgebras
AT mariettomgb mappingspreservingsumofproductsacircbbaonfactorvonneumannalgebras
first_indexed 2025-12-02T15:34:54Z
last_indexed 2025-12-02T15:34:54Z
_version_ 1850411261096886272