Decompositions of set-valued mappings

Let \(X\) be a set, \(B_{X}\) denotes the family of all subsets of \(X\) and \(F: X \to B_{X}\) be a set-valued mapping such that \(x \in F(x)\), \(\sup_{x\in X} | F(x)|< \kappa\), \(\sup_{x\in X} | F^{-1}(x)|< \kappa\) for all \(x\in X\) and some infinite cardinal \(\kappa\). Then the...

Full description

Saved in:
Bibliographic Details
Date:2021
Main Author: Protasov, I.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2021
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1485
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1485
record_format ojs
spelling admjournalluguniveduua-article-14852021-01-29T09:38:49Z Decompositions of set-valued mappings Protasov, I. set-valued mapping, selector, ballean 03E05, 54E05 Let \(X\) be a set, \(B_{X}\) denotes the family of all subsets of \(X\) and \(F: X \to B_{X}\) be a set-valued mapping such that \(x \in F(x)\), \(\sup_{x\in X} | F(x)|< \kappa\), \(\sup_{x\in X} | F^{-1}(x)|< \kappa\) for all \(x\in X\) and some infinite cardinal \(\kappa\). Then there exists a family \(\mathcal{F}\) of bijective selectors of \(F\) such that \(|\mathcal{F}|<\kappa\) and \(F(x) = \{ f(x): f\in\mathcal{F}\}\) for each \(x\in X\). We apply this result to \(G\)-space representations of balleans.  Lugansk National Taras Shevchenko University 2021-01-29 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1485 10.12958/adm1485 Algebra and Discrete Mathematics; Vol 30, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1485/pdf Copyright (c) 2021 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2021-01-29T09:38:49Z
collection OJS
language English
topic set-valued mapping
selector
ballean
03E05
54E05
spellingShingle set-valued mapping
selector
ballean
03E05
54E05
Protasov, I.
Decompositions of set-valued mappings
topic_facet set-valued mapping
selector
ballean
03E05
54E05
format Article
author Protasov, I.
author_facet Protasov, I.
author_sort Protasov, I.
title Decompositions of set-valued mappings
title_short Decompositions of set-valued mappings
title_full Decompositions of set-valued mappings
title_fullStr Decompositions of set-valued mappings
title_full_unstemmed Decompositions of set-valued mappings
title_sort decompositions of set-valued mappings
description Let \(X\) be a set, \(B_{X}\) denotes the family of all subsets of \(X\) and \(F: X \to B_{X}\) be a set-valued mapping such that \(x \in F(x)\), \(\sup_{x\in X} | F(x)|< \kappa\), \(\sup_{x\in X} | F^{-1}(x)|< \kappa\) for all \(x\in X\) and some infinite cardinal \(\kappa\). Then there exists a family \(\mathcal{F}\) of bijective selectors of \(F\) such that \(|\mathcal{F}|<\kappa\) and \(F(x) = \{ f(x): f\in\mathcal{F}\}\) for each \(x\in X\). We apply this result to \(G\)-space representations of balleans. 
publisher Lugansk National Taras Shevchenko University
publishDate 2021
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1485
work_keys_str_mv AT protasovi decompositionsofsetvaluedmappings
first_indexed 2025-12-02T15:45:49Z
last_indexed 2025-12-02T15:45:49Z
_version_ 1850412139007705088