On a graph isomorphic to its intersection graph: self-graphoidal graphs
A graph \(G\) is called a graphoidal graph if there exists a graph \(H\) and a graphoidal cover \(\psi\) of \(H\) such that \(G\cong\Omega(H,\psi)\). Then the graph \(G\) is said to be self-graphoidal if it is isomorphic to one of its graphoidal graphs. In this paper, we have examined the existence...
Gespeichert in:
| Datum: | 2019 |
|---|---|
| Hauptverfasser: | Das, P. K., Singh, K. R. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2019
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/149 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
On a graph isomorphic to its intersection graph: self-graphoidal graphs
von: Das, P. K., et al.
Veröffentlicht: (2019) -
On the zero forcing number of graphs and their splitting graphs
von: Chacko, Baby, et al.
Veröffentlicht: (2019) -
On the zero forcing number of graphs and their splitting graphs
von: Chacko, Baby, et al.
Veröffentlicht: (2019) -
On a graph isomorphic to its intersection graph: self-graphoidal graphs
von: Das, P.K., et al.
Veröffentlicht: (2018) -
Co-intersection graph of submodules of a module
von: Mahdavi, Lotf Ali, et al.
Veröffentlicht: (2016)