Norm of Gaussian integers in arithmetical progressions and narrow sectors

We proved the equidistribution of the Gaussian integer numbers in narrow sectors of the circle of radius \(x^{\frac{1}{2}}\), \(x\to\infty\), with the norms belonging to arithmetic progression \(N(\alpha)\equiv\ell\pmod{q}\) with the common difference of an arithmetic progression \(q\), \(q\ll{x}^{\...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Varbanets, S., Vorobyov, Y.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1529
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1529
record_format ojs
spelling admjournalluguniveduua-article-15292020-07-08T07:13:20Z Norm of Gaussian integers in arithmetical progressions and narrow sectors Varbanets, S. Vorobyov, Y. Gaussian integers, norm groups, Hecke \(Z\)-function, functional equation 11L07, 11T23 We proved the equidistribution of the Gaussian integer numbers in narrow sectors of the circle of radius \(x^{\frac{1}{2}}\), \(x\to\infty\), with the norms belonging to arithmetic progression \(N(\alpha)\equiv\ell\pmod{q}\) with the common difference of an arithmetic progression \(q\), \(q\ll{x}^{\frac{2}{3}-\varepsilon}\). Lugansk National Taras Shevchenko University 2020-07-08 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1529 10.12958/adm1529 Algebra and Discrete Mathematics; Vol 29, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1529/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1529/655 Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2020-07-08T07:13:20Z
collection OJS
language English
topic Gaussian integers
norm groups
Hecke \(Z\)-function
functional equation
11L07
11T23
spellingShingle Gaussian integers
norm groups
Hecke \(Z\)-function
functional equation
11L07
11T23
Varbanets, S.
Vorobyov, Y.
Norm of Gaussian integers in arithmetical progressions and narrow sectors
topic_facet Gaussian integers
norm groups
Hecke \(Z\)-function
functional equation
11L07
11T23
format Article
author Varbanets, S.
Vorobyov, Y.
author_facet Varbanets, S.
Vorobyov, Y.
author_sort Varbanets, S.
title Norm of Gaussian integers in arithmetical progressions and narrow sectors
title_short Norm of Gaussian integers in arithmetical progressions and narrow sectors
title_full Norm of Gaussian integers in arithmetical progressions and narrow sectors
title_fullStr Norm of Gaussian integers in arithmetical progressions and narrow sectors
title_full_unstemmed Norm of Gaussian integers in arithmetical progressions and narrow sectors
title_sort norm of gaussian integers in arithmetical progressions and narrow sectors
description We proved the equidistribution of the Gaussian integer numbers in narrow sectors of the circle of radius \(x^{\frac{1}{2}}\), \(x\to\infty\), with the norms belonging to arithmetic progression \(N(\alpha)\equiv\ell\pmod{q}\) with the common difference of an arithmetic progression \(q\), \(q\ll{x}^{\frac{2}{3}-\varepsilon}\).
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1529
work_keys_str_mv AT varbanetss normofgaussianintegersinarithmeticalprogressionsandnarrowsectors
AT vorobyovy normofgaussianintegersinarithmeticalprogressionsandnarrowsectors
first_indexed 2025-12-02T15:30:20Z
last_indexed 2025-12-02T15:30:20Z
_version_ 1850412049092313089