Enumeration of strong dichotomy patterns
We apply the version of Pólya-Redfield theory obtained by White to count patterns with a given automorphism group to the enumeration of strong dichotomy patterns, that is, we count bicolor patterns of \(\mathbb{Z}_{2k}\) with respect to the action of \(\operatorname{Aff}(\mathbb{Z}_{2k})\) and with...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/156 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-156 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-1562018-07-24T22:56:15Z Enumeration of strong dichotomy patterns Agustín-Aquino, Octavio Alberto strong dichotomy pattern, Pólya-Redfield theory, cyclic sieving 00A65, 05E18 We apply the version of Pólya-Redfield theory obtained by White to count patterns with a given automorphism group to the enumeration of strong dichotomy patterns, that is, we count bicolor patterns of \(\mathbb{Z}_{2k}\) with respect to the action of \(\operatorname{Aff}(\mathbb{Z}_{2k})\) and with trivial isotropy group. As a byproduct, a conjectural instance of phenomenon similar to cyclic sieving for special cases of these combinatorial objects is proposed. Lugansk National Taras Shevchenko University 2018-07-25 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/156 Algebra and Discrete Mathematics; Vol 25, No 2 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/156/pdf Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-07-24T22:56:15Z |
| collection |
OJS |
| language |
English |
| topic |
strong dichotomy pattern Pólya-Redfield theory cyclic sieving 00A65 05E18 |
| spellingShingle |
strong dichotomy pattern Pólya-Redfield theory cyclic sieving 00A65 05E18 Agustín-Aquino, Octavio Alberto Enumeration of strong dichotomy patterns |
| topic_facet |
strong dichotomy pattern Pólya-Redfield theory cyclic sieving 00A65 05E18 |
| format |
Article |
| author |
Agustín-Aquino, Octavio Alberto |
| author_facet |
Agustín-Aquino, Octavio Alberto |
| author_sort |
Agustín-Aquino, Octavio Alberto |
| title |
Enumeration of strong dichotomy patterns |
| title_short |
Enumeration of strong dichotomy patterns |
| title_full |
Enumeration of strong dichotomy patterns |
| title_fullStr |
Enumeration of strong dichotomy patterns |
| title_full_unstemmed |
Enumeration of strong dichotomy patterns |
| title_sort |
enumeration of strong dichotomy patterns |
| description |
We apply the version of Pólya-Redfield theory obtained by White to count patterns with a given automorphism group to the enumeration of strong dichotomy patterns, that is, we count bicolor patterns of \(\mathbb{Z}_{2k}\) with respect to the action of \(\operatorname{Aff}(\mathbb{Z}_{2k})\) and with trivial isotropy group. As a byproduct, a conjectural instance of phenomenon similar to cyclic sieving for special cases of these combinatorial objects is proposed. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/156 |
| work_keys_str_mv |
AT agustinaquinooctavioalberto enumerationofstrongdichotomypatterns |
| first_indexed |
2025-12-02T15:25:36Z |
| last_indexed |
2025-12-02T15:25:36Z |
| _version_ |
1850411845119115264 |