On Herstein's identity in prime rings

A celebrated result of Herstein [10, Theorem 6] states that a ring \(R\) must be commutative if \([x,y]^{n(x,y)}=[x,y]\) for all \(x,y\in R,\) where \(n(x,y)>1\) is an integer. In this paper, we investigate the structure of a prime ring satisfies the identity \(F([x,y])^{n}=F([x,y])\) and \(\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2022
1. Verfasser: Sandhu, G. S.
Format: Artikel
Sprache:Englisch
Veröffentlicht: Lugansk National Taras Shevchenko University 2022
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1581
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543240241545216
author Sandhu, G. S.
author_facet Sandhu, G. S.
author_sort Sandhu, G. S.
baseUrl_str
collection OJS
datestamp_date 2022-06-15T04:49:44Z
description A celebrated result of Herstein [10, Theorem 6] states that a ring \(R\) must be commutative if \([x,y]^{n(x,y)}=[x,y]\) for all \(x,y\in R,\) where \(n(x,y)>1\) is an integer. In this paper, we investigate the structure of a prime ring satisfies the identity \(F([x,y])^{n}=F([x,y])\) and \(\sigma([x,y])^{n}=\sigma([x,y]),\) where \(F\) and \(\sigma\) are generalized derivation and automorphism of a prime ring \(R\), respectively and \(n>1\) a fixed integer.
first_indexed 2025-12-02T15:30:25Z
format Article
id admjournalluguniveduua-article-1581
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:30:25Z
publishDate 2022
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-15812022-06-15T04:49:44Z On Herstein's identity in prime rings Sandhu, G. S. prime rings, lie ideal, generalized derivation, automorphism, GPIs 16W10, 16N60, 16W25 A celebrated result of Herstein [10, Theorem 6] states that a ring \(R\) must be commutative if \([x,y]^{n(x,y)}=[x,y]\) for all \(x,y\in R,\) where \(n(x,y)>1\) is an integer. In this paper, we investigate the structure of a prime ring satisfies the identity \(F([x,y])^{n}=F([x,y])\) and \(\sigma([x,y])^{n}=\sigma([x,y]),\) where \(F\) and \(\sigma\) are generalized derivation and automorphism of a prime ring \(R\), respectively and \(n>1\) a fixed integer. Lugansk National Taras Shevchenko University 2022-06-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1581 10.12958/adm1581 Algebra and Discrete Mathematics; Vol 33, No 1 (2022) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1581/pdf Copyright (c) 2022 Algebra and Discrete Mathematics
spellingShingle prime rings
lie ideal
generalized derivation
automorphism
GPIs
16W10
16N60
16W25
Sandhu, G. S.
On Herstein's identity in prime rings
title On Herstein's identity in prime rings
title_full On Herstein's identity in prime rings
title_fullStr On Herstein's identity in prime rings
title_full_unstemmed On Herstein's identity in prime rings
title_short On Herstein's identity in prime rings
title_sort on herstein's identity in prime rings
topic prime rings
lie ideal
generalized derivation
automorphism
GPIs
16W10
16N60
16W25
topic_facet prime rings
lie ideal
generalized derivation
automorphism
GPIs
16W10
16N60
16W25
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1581
work_keys_str_mv AT sandhugs onhersteinsidentityinprimerings