On lifting and extending properties on direct sums of hollow uniform modules

A module \(M\) is said to be lifting if, for any submodule \(N\) of \(M\), there exists a direct summand \(X\) of \(M\) contained in \(N\) such that \(N/X\) is small in \(M/X\). A module \(M\) is said to satisfy the {\it finite internal exchange property} if, for any direct summand \(X\) of \(M\) an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2022
1. Verfasser: Shibata, Y.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2022
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1643
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:A module \(M\) is said to be lifting if, for any submodule \(N\) of \(M\), there exists a direct summand \(X\) of \(M\) contained in \(N\) such that \(N/X\) is small in \(M/X\). A module \(M\) is said to satisfy the {\it finite internal exchange property} if, for any direct summand \(X\) of \(M\) and any finite direct sum decomposition \(M = \bigoplus_{i = 1}^n M_i\), there exists a direct summand \(M_i'\) of \(M_i\) \((i = 1, 2, \ldots, n)\) such that \(M = X \oplus (\bigoplus_{i = 1}^n M_i')\). In this paper, we first give characterizations for the square of a hollow and uniform module to be lifting (extending). In addition, we solve negatively the question ``Does any lifting module satisfy the finite internal exchange property?'' as an application of this result.