On lifting and extending properties on direct sums of hollow uniform modules

A module \(M\) is said to be lifting if, for any submodule \(N\) of \(M\), there exists a direct summand \(X\) of \(M\) contained in \(N\) such that \(N/X\) is small in \(M/X\). A module \(M\) is said to satisfy the {\it finite internal exchange property} if, for any direct summand \(X\) of \(M\) an...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автор: Shibata, Y.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2022
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1643
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1643
record_format ojs
spelling admjournalluguniveduua-article-16432022-06-15T04:49:44Z On lifting and extending properties on direct sums of hollow uniform modules Shibata, Y. lifting modules, extending modules, finite internal exchange property 16D40, 16D70 A module \(M\) is said to be lifting if, for any submodule \(N\) of \(M\), there exists a direct summand \(X\) of \(M\) contained in \(N\) such that \(N/X\) is small in \(M/X\). A module \(M\) is said to satisfy the {\it finite internal exchange property} if, for any direct summand \(X\) of \(M\) and any finite direct sum decomposition \(M = \bigoplus_{i = 1}^n M_i\), there exists a direct summand \(M_i'\) of \(M_i\) \((i = 1, 2, \ldots, n)\) such that \(M = X \oplus (\bigoplus_{i = 1}^n M_i')\). In this paper, we first give characterizations for the square of a hollow and uniform module to be lifting (extending). In addition, we solve negatively the question ``Does any lifting module satisfy the finite internal exchange property?'' as an application of this result. Lugansk National Taras Shevchenko University 2022-06-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1643 10.12958/adm1643 Algebra and Discrete Mathematics; Vol 33, No 1 (2022) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1643/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1643/734 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1643/763 Copyright (c) 2022 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2022-06-15T04:49:44Z
collection OJS
language English
topic lifting modules
extending modules
finite internal exchange property
16D40
16D70
spellingShingle lifting modules
extending modules
finite internal exchange property
16D40
16D70
Shibata, Y.
On lifting and extending properties on direct sums of hollow uniform modules
topic_facet lifting modules
extending modules
finite internal exchange property
16D40
16D70
format Article
author Shibata, Y.
author_facet Shibata, Y.
author_sort Shibata, Y.
title On lifting and extending properties on direct sums of hollow uniform modules
title_short On lifting and extending properties on direct sums of hollow uniform modules
title_full On lifting and extending properties on direct sums of hollow uniform modules
title_fullStr On lifting and extending properties on direct sums of hollow uniform modules
title_full_unstemmed On lifting and extending properties on direct sums of hollow uniform modules
title_sort on lifting and extending properties on direct sums of hollow uniform modules
description A module \(M\) is said to be lifting if, for any submodule \(N\) of \(M\), there exists a direct summand \(X\) of \(M\) contained in \(N\) such that \(N/X\) is small in \(M/X\). A module \(M\) is said to satisfy the {\it finite internal exchange property} if, for any direct summand \(X\) of \(M\) and any finite direct sum decomposition \(M = \bigoplus_{i = 1}^n M_i\), there exists a direct summand \(M_i'\) of \(M_i\) \((i = 1, 2, \ldots, n)\) such that \(M = X \oplus (\bigoplus_{i = 1}^n M_i')\). In this paper, we first give characterizations for the square of a hollow and uniform module to be lifting (extending). In addition, we solve negatively the question ``Does any lifting module satisfy the finite internal exchange property?'' as an application of this result.
publisher Lugansk National Taras Shevchenko University
publishDate 2022
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1643
work_keys_str_mv AT shibatay onliftingandextendingpropertiesondirectsumsofhollowuniformmodules
first_indexed 2025-12-02T15:25:44Z
last_indexed 2025-12-02T15:25:44Z
_version_ 1850411846351192064