Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\)
We prove a particular case of the conjecture of Berest--Eshmatov--Eshmatov by showing that the group of unimodular automorphisms of \(\mathbb{C}[ x,y]\) acts in an infinitely-transitive way on the Calogero-Moser space \(\mathcal{C}_2\).
Збережено в:
| Дата: | 2021 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2021
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1656 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-1656 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-16562021-07-19T08:39:30Z Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\) Kesten, J. Mathers, S. Normatov, Z. Calogero-Moser space, infinite transitivity 14R20, 14L30, 14J50 We prove a particular case of the conjecture of Berest--Eshmatov--Eshmatov by showing that the group of unimodular automorphisms of \(\mathbb{C}[ x,y]\) acts in an infinitely-transitive way on the Calogero-Moser space \(\mathcal{C}_2\). Lugansk National Taras Shevchenko University NSF Grant 1658672 2021-07-19 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1656 10.12958/adm1656 Algebra and Discrete Mathematics; Vol 31, No 2 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1656/pdf Copyright (c) 2021 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2021-07-19T08:39:30Z |
| collection |
OJS |
| language |
English |
| topic |
Calogero-Moser space infinite transitivity 14R20 14L30 14J50 |
| spellingShingle |
Calogero-Moser space infinite transitivity 14R20 14L30 14J50 Kesten, J. Mathers, S. Normatov, Z. Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\) |
| topic_facet |
Calogero-Moser space infinite transitivity 14R20 14L30 14J50 |
| format |
Article |
| author |
Kesten, J. Mathers, S. Normatov, Z. |
| author_facet |
Kesten, J. Mathers, S. Normatov, Z. |
| author_sort |
Kesten, J. |
| title |
Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\) |
| title_short |
Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\) |
| title_full |
Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\) |
| title_fullStr |
Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\) |
| title_full_unstemmed |
Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\) |
| title_sort |
infinite transitivity on the calogero-moser space \(\mathcal{c}_2\) |
| description |
We prove a particular case of the conjecture of Berest--Eshmatov--Eshmatov by showing that the group of unimodular automorphisms of \(\mathbb{C}[ x,y]\) acts in an infinitely-transitive way on the Calogero-Moser space \(\mathcal{C}_2\). |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2021 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1656 |
| work_keys_str_mv |
AT kestenj infinitetransitivityonthecalogeromoserspacemathcalc2 AT matherss infinitetransitivityonthecalogeromoserspacemathcalc2 AT normatovz infinitetransitivityonthecalogeromoserspacemathcalc2 |
| first_indexed |
2025-12-02T15:30:28Z |
| last_indexed |
2025-12-02T15:30:28Z |
| _version_ |
1850412052543176704 |