Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\)

We prove a particular case of the conjecture of Berest--Eshmatov--Eshmatov by showing that the group of unimodular automorphisms of \(\mathbb{C}[ x,y]\) acts in an infinitely-transitive way on the Calogero-Moser space \(\mathcal{C}_2\).

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Kesten, J., Mathers, S., Normatov, Z.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2021
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1656
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1656
record_format ojs
spelling admjournalluguniveduua-article-16562021-07-19T08:39:30Z Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\) Kesten, J. Mathers, S. Normatov, Z. Calogero-Moser space, infinite transitivity 14R20, 14L30, 14J50 We prove a particular case of the conjecture of Berest--Eshmatov--Eshmatov by showing that the group of unimodular automorphisms of \(\mathbb{C}[ x,y]\) acts in an infinitely-transitive way on the Calogero-Moser space \(\mathcal{C}_2\). Lugansk National Taras Shevchenko University NSF Grant 1658672 2021-07-19 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1656 10.12958/adm1656 Algebra and Discrete Mathematics; Vol 31, No 2 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1656/pdf Copyright (c) 2021 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2021-07-19T08:39:30Z
collection OJS
language English
topic Calogero-Moser space
infinite transitivity
14R20
14L30
14J50
spellingShingle Calogero-Moser space
infinite transitivity
14R20
14L30
14J50
Kesten, J.
Mathers, S.
Normatov, Z.
Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\)
topic_facet Calogero-Moser space
infinite transitivity
14R20
14L30
14J50
format Article
author Kesten, J.
Mathers, S.
Normatov, Z.
author_facet Kesten, J.
Mathers, S.
Normatov, Z.
author_sort Kesten, J.
title Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\)
title_short Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\)
title_full Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\)
title_fullStr Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\)
title_full_unstemmed Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\)
title_sort infinite transitivity on the calogero-moser space \(\mathcal{c}_2\)
description We prove a particular case of the conjecture of Berest--Eshmatov--Eshmatov by showing that the group of unimodular automorphisms of \(\mathbb{C}[ x,y]\) acts in an infinitely-transitive way on the Calogero-Moser space \(\mathcal{C}_2\).
publisher Lugansk National Taras Shevchenko University
publishDate 2021
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1656
work_keys_str_mv AT kestenj infinitetransitivityonthecalogeromoserspacemathcalc2
AT matherss infinitetransitivityonthecalogeromoserspacemathcalc2
AT normatovz infinitetransitivityonthecalogeromoserspacemathcalc2
first_indexed 2025-12-02T15:30:28Z
last_indexed 2025-12-02T15:30:28Z
_version_ 1850412052543176704