Structure of relatively free trioids

Loday and Ronco introduced the notions of a~trioid and a trialgebra, and constructed the free trioid of rank \(1\) and the free trialgebra. This paper is a survey of recent developments in the study of free objects in the varieties of trioids and trialgebras. We present the constructions of the free...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2021
1. Verfasser: Zhuchok, A. V.
Format: Artikel
Sprache:Englisch
Veröffentlicht: Lugansk National Taras Shevchenko University 2021
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1732
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543245013614592
author Zhuchok, A. V.
author_facet Zhuchok, A. V.
author_sort Zhuchok, A. V.
baseUrl_str
collection OJS
datestamp_date 2021-04-11T06:11:31Z
description Loday and Ronco introduced the notions of a~trioid and a trialgebra, and constructed the free trioid of rank \(1\) and the free trialgebra. This paper is a survey of recent developments in the study of free objects in the varieties of trioids and trialgebras. We present the constructions of the free trialgebra and the free trioid, the free commutative trioid, the free \(n\)-nilpotent trioid, the free left (right) \(n\)-trinilpotent trioid, and the free rectangular trioid. Some of these results can be applied to constructing relatively free trialgebras.
first_indexed 2025-12-02T15:30:31Z
format Article
id admjournalluguniveduua-article-1732
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:30:31Z
publishDate 2021
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-17322021-04-11T06:11:31Z Structure of relatively free trioids Zhuchok, A. V. trioid, trialgebra, free trioid, free trialgebra, relatively free trioid, semigroup 08B20, 20M10, 20M50, 17A30, 17D9 Loday and Ronco introduced the notions of a~trioid and a trialgebra, and constructed the free trioid of rank \(1\) and the free trialgebra. This paper is a survey of recent developments in the study of free objects in the varieties of trioids and trialgebras. We present the constructions of the free trialgebra and the free trioid, the free commutative trioid, the free \(n\)-nilpotent trioid, the free left (right) \(n\)-trinilpotent trioid, and the free rectangular trioid. Some of these results can be applied to constructing relatively free trialgebras. Lugansk National Taras Shevchenko University 2021-04-10 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1732 10.12958/adm1732 Algebra and Discrete Mathematics; Vol 31, No 1 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1732/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1732/791 Copyright (c) 2021 Algebra and Discrete Mathematics
spellingShingle trioid
trialgebra
free trioid
free trialgebra
relatively free trioid
semigroup
08B20
20M10
20M50
17A30
17D9
Zhuchok, A. V.
Structure of relatively free trioids
title Structure of relatively free trioids
title_full Structure of relatively free trioids
title_fullStr Structure of relatively free trioids
title_full_unstemmed Structure of relatively free trioids
title_short Structure of relatively free trioids
title_sort structure of relatively free trioids
topic trioid
trialgebra
free trioid
free trialgebra
relatively free trioid
semigroup
08B20
20M10
20M50
17A30
17D9
topic_facet trioid
trialgebra
free trioid
free trialgebra
relatively free trioid
semigroup
08B20
20M10
20M50
17A30
17D9
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1732
work_keys_str_mv AT zhuchokav structureofrelativelyfreetrioids