Conjugate Laplacian eigenvalues of co-neighbour graphs

Let \(G\) be a simple graph of order \(n\). A vertex subset is called independent if its elements are pairwise non-adjacent. Two vertices in \(G\) are co-neighbour vertices if they share the same neighbours. Clearly, if \(S\) is a set of pairwise co-neighbour vertices of a graph \(G\), then \(S\) is...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автор: Paul, S.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2022
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1754
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543029870985216
author Paul, S.
author_facet Paul, S.
author_sort Paul, S.
baseUrl_str
collection OJS
datestamp_date 2022-10-14T16:01:17Z
description Let \(G\) be a simple graph of order \(n\). A vertex subset is called independent if its elements are pairwise non-adjacent. Two vertices in \(G\) are co-neighbour vertices if they share the same neighbours. Clearly, if \(S\) is a set of pairwise co-neighbour vertices of a graph \(G\), then \(S\) is an independent set of \(G\). Let \(c = a + b\sqrt{m}\) and \(\overline{c} = a-b\sqrt{m}\), where \(a\) and \(b\) are two nonzero integers and \(m\) is a positive integer such that \(m\) is not a perfect square. In [M. Lepovi\'c, On conjugate adjacency matrices of a graph, Discrete Mathematics, 307, 730--738,  2007], the author defined the matrix \(A^c(G) = [c_{ij} ]_n\) to be the conjugate adjacency matrix of \(G,\) if \(c_{ij}=c\) for any two adjacent vertices \(i\) and \(j\), \(c_{ij}= \overline{c}\) for any two nonadjacent vertices \(i\) and \(j\), and \(c_{ij}= 0\) if \(i=j\). In [S. Paul, Conjugate Laplacian matrices of a graph, Discrete Mathematics, Algorithms and Applications, 10, 1850082, 2018], the author defined the conjugate Laplacian matrix of graphs and described various properties of its eigenvalues and eigenspaces. In this article, we determine certain properties of the conjugate Laplacian eigenvalues and the eigenvectors of a graph with co-neighbour vertices.
first_indexed 2025-12-02T15:39:11Z
format Article
id admjournalluguniveduua-article-1754
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:39:11Z
publishDate 2022
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-17542022-10-14T16:01:17Z Conjugate Laplacian eigenvalues of co-neighbour graphs Paul, S. conjugate Laplacian matrix, co-neighbour vertices 05C50, 05C05, 15A18 Let \(G\) be a simple graph of order \(n\). A vertex subset is called independent if its elements are pairwise non-adjacent. Two vertices in \(G\) are co-neighbour vertices if they share the same neighbours. Clearly, if \(S\) is a set of pairwise co-neighbour vertices of a graph \(G\), then \(S\) is an independent set of \(G\). Let \(c = a + b\sqrt{m}\) and \(\overline{c} = a-b\sqrt{m}\), where \(a\) and \(b\) are two nonzero integers and \(m\) is a positive integer such that \(m\) is not a perfect square. In [M. Lepovi\'c, On conjugate adjacency matrices of a graph, Discrete Mathematics, 307, 730--738,  2007], the author defined the matrix \(A^c(G) = [c_{ij} ]_n\) to be the conjugate adjacency matrix of \(G,\) if \(c_{ij}=c\) for any two adjacent vertices \(i\) and \(j\), \(c_{ij}= \overline{c}\) for any two nonadjacent vertices \(i\) and \(j\), and \(c_{ij}= 0\) if \(i=j\). In [S. Paul, Conjugate Laplacian matrices of a graph, Discrete Mathematics, Algorithms and Applications, 10, 1850082, 2018], the author defined the conjugate Laplacian matrix of graphs and described various properties of its eigenvalues and eigenspaces. In this article, we determine certain properties of the conjugate Laplacian eigenvalues and the eigenvectors of a graph with co-neighbour vertices. Lugansk National Taras Shevchenko University 2022-10-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1754 10.12958/adm1754 Algebra and Discrete Mathematics; Vol 33, No 2 (2022) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1754/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1754/816 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1754/863 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1754/1010 Copyright (c) 2022 Algebra and Discrete Mathematics
spellingShingle conjugate Laplacian matrix
co-neighbour vertices
05C50
05C05
15A18
Paul, S.
Conjugate Laplacian eigenvalues of co-neighbour graphs
title Conjugate Laplacian eigenvalues of co-neighbour graphs
title_full Conjugate Laplacian eigenvalues of co-neighbour graphs
title_fullStr Conjugate Laplacian eigenvalues of co-neighbour graphs
title_full_unstemmed Conjugate Laplacian eigenvalues of co-neighbour graphs
title_short Conjugate Laplacian eigenvalues of co-neighbour graphs
title_sort conjugate laplacian eigenvalues of co-neighbour graphs
topic conjugate Laplacian matrix
co-neighbour vertices
05C50
05C05
15A18
topic_facet conjugate Laplacian matrix
co-neighbour vertices
05C50
05C05
15A18
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1754
work_keys_str_mv AT pauls conjugatelaplacianeigenvaluesofconeighbourgraphs