Approximating length-based invariants in atomic Puiseux monoids

A numerical monoid is a cofinite additive submonoid of the nonnegative integers, while a Puiseux monoid is an additive submonoid of the nonnegative cone of the rational numbers. Using that a Puiseux monoid is an increasing union of copies of numerical monoids, we prove that some of the factorization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2022
1. Verfasser: Polo, H.
Format: Artikel
Sprache:Englisch
Veröffentlicht: Lugansk National Taras Shevchenko University 2022
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1760
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543342393819136
author Polo, H.
author_facet Polo, H.
author_sort Polo, H.
baseUrl_str
collection OJS
datestamp_date 2022-06-15T04:49:44Z
description A numerical monoid is a cofinite additive submonoid of the nonnegative integers, while a Puiseux monoid is an additive submonoid of the nonnegative cone of the rational numbers. Using that a Puiseux monoid is an increasing union of copies of numerical monoids, we prove that some of the factorization invariants of these two classes of monoids are related through a limiting process. This allows us to extend results from numerical to Puiseux monoids. We illustrate the versatility of this technique by recovering various known results about Puiseux monoids.
first_indexed 2026-02-08T08:01:42Z
format Article
id admjournalluguniveduua-article-1760
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T08:01:42Z
publishDate 2022
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-17602022-06-15T04:49:44Z Approximating length-based invariants in atomic Puiseux monoids Polo, H. atomic Puiseux monoids, numerical monoids, approximation, factorization invariants, sets of lengths, elasticity, set of distances Primary 20M13; Secondary 40A05, 20M14 A numerical monoid is a cofinite additive submonoid of the nonnegative integers, while a Puiseux monoid is an additive submonoid of the nonnegative cone of the rational numbers. Using that a Puiseux monoid is an increasing union of copies of numerical monoids, we prove that some of the factorization invariants of these two classes of monoids are related through a limiting process. This allows us to extend results from numerical to Puiseux monoids. We illustrate the versatility of this technique by recovering various known results about Puiseux monoids. Lugansk National Taras Shevchenko University 2022-06-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1760 10.12958/adm1760 Algebra and Discrete Mathematics; Vol 33, No 1 (2022) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1760/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1760/824 Copyright (c) 2022 Algebra and Discrete Mathematics
spellingShingle atomic Puiseux monoids
numerical monoids
approximation
factorization invariants
sets of lengths
elasticity
set of distances
Primary 20M13; Secondary 40A05
20M14
Polo, H.
Approximating length-based invariants in atomic Puiseux monoids
title Approximating length-based invariants in atomic Puiseux monoids
title_full Approximating length-based invariants in atomic Puiseux monoids
title_fullStr Approximating length-based invariants in atomic Puiseux monoids
title_full_unstemmed Approximating length-based invariants in atomic Puiseux monoids
title_short Approximating length-based invariants in atomic Puiseux monoids
title_sort approximating length-based invariants in atomic puiseux monoids
topic atomic Puiseux monoids
numerical monoids
approximation
factorization invariants
sets of lengths
elasticity
set of distances
Primary 20M13; Secondary 40A05
20M14
topic_facet atomic Puiseux monoids
numerical monoids
approximation
factorization invariants
sets of lengths
elasticity
set of distances
Primary 20M13; Secondary 40A05
20M14
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1760
work_keys_str_mv AT poloh approximatinglengthbasedinvariantsinatomicpuiseuxmonoids