On dual Rickart modules and weak dual Rickart modules

Let \(R\) be a ring. A right \(R\)-module \(M\) is called \(\mathrm{d}\)-Rickart if for every endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) is a direct summand of \(M\) and it is called \(\mathrm{wd}\)-Rickart if for every nonzero endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) contains a nonz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Keskin Tütüncü, Derya, Orhan Ertas, Nil, Tribak, Rachid
Format: Artikel
Sprache:Englisch
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/178
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543423994003456
author Keskin Tütüncü, Derya
Orhan Ertas, Nil
Tribak, Rachid
author_facet Keskin Tütüncü, Derya
Orhan Ertas, Nil
Tribak, Rachid
author_sort Keskin Tütüncü, Derya
baseUrl_str
collection OJS
datestamp_date 2018-07-24T22:56:15Z
description Let \(R\) be a ring. A right \(R\)-module \(M\) is called \(\mathrm{d}\)-Rickart if for every endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) is a direct summand of \(M\) and it is called \(\mathrm{wd}\)-Rickart if for every nonzero endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) contains a nonzero direct summand of \(M\). We begin with some basic properties of \(\mathrm{(w)d}\)-Rickart modules. Then we study direct sums of \(\mathrm{(w)d}\)-Rickart modules and the class of rings for which every finitely generated module is \(\mathrm{(w)d}\)-Rickart. We conclude by some structure results.
first_indexed 2025-12-02T15:42:20Z
format Article
id admjournalluguniveduua-article-178
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:42:20Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-1782018-07-24T22:56:15Z On dual Rickart modules and weak dual Rickart modules Keskin Tütüncü, Derya Orhan Ertas, Nil Tribak, Rachid dual Rickart modules, weak dual Rickart modules, weak Rickart rings, V-rings Primary 16D10; Secondary 16D80 Let \(R\) be a ring. A right \(R\)-module \(M\) is called \(\mathrm{d}\)-Rickart if for every endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) is a direct summand of \(M\) and it is called \(\mathrm{wd}\)-Rickart if for every nonzero endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) contains a nonzero direct summand of \(M\). We begin with some basic properties of \(\mathrm{(w)d}\)-Rickart modules. Then we study direct sums of \(\mathrm{(w)d}\)-Rickart modules and the class of rings for which every finitely generated module is \(\mathrm{(w)d}\)-Rickart. We conclude by some structure results. Lugansk National Taras Shevchenko University Scientific and Technological Research Council of Turkey 2018-07-25 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/178 Algebra and Discrete Mathematics; Vol 25, No 2 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/178/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/178/64 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle dual Rickart modules
weak dual Rickart modules
weak Rickart rings
V-rings
Primary 16D10
Secondary 16D80
Keskin Tütüncü, Derya
Orhan Ertas, Nil
Tribak, Rachid
On dual Rickart modules and weak dual Rickart modules
title On dual Rickart modules and weak dual Rickart modules
title_full On dual Rickart modules and weak dual Rickart modules
title_fullStr On dual Rickart modules and weak dual Rickart modules
title_full_unstemmed On dual Rickart modules and weak dual Rickart modules
title_short On dual Rickart modules and weak dual Rickart modules
title_sort on dual rickart modules and weak dual rickart modules
topic dual Rickart modules
weak dual Rickart modules
weak Rickart rings
V-rings
Primary 16D10
Secondary 16D80
topic_facet dual Rickart modules
weak dual Rickart modules
weak Rickart rings
V-rings
Primary 16D10
Secondary 16D80
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/178
work_keys_str_mv AT keskintutuncuderya ondualrickartmodulesandweakdualrickartmodules
AT orhanertasnil ondualrickartmodulesandweakdualrickartmodules
AT tribakrachid ondualrickartmodulesandweakdualrickartmodules