Further combinatorial results for the symmetric inverse monoid

Let \(\mathcal{I}_{n}\) be the set of partial one-to-one transformations on the chain \(X_{n}=\{1,2,\dots,n\}\) and, for each \(\alpha\) in \(\mathcal{I}_{n}\), let \(h(\alpha)=|\operatorname{Im}\alpha|\), \(f(\alpha)=|\{x\in X_{n}\colon x\alpha=x\}|\) and \(w(\alpha) =\max(\operatorname{Im}\alpha)...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автори: Laradji, A., Umar, A.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2022
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1793
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1793
record_format ojs
spelling admjournalluguniveduua-article-17932022-10-14T16:01:17Z Further combinatorial results for the symmetric inverse monoid Laradji, A. Umar, A. partial one-to-one transformation, symmetric inverse monoid, height of \(\alpha\), fix of \(\alpha\), (left) waist of \(\alpha\), permutation, (partial) derangement 20M18, 20M20, 05A10, 05A15 Let \(\mathcal{I}_{n}\) be the set of partial one-to-one transformations on the chain \(X_{n}=\{1,2,\dots,n\}\) and, for each \(\alpha\) in \(\mathcal{I}_{n}\), let \(h(\alpha)=|\operatorname{Im}\alpha|\), \(f(\alpha)=|\{x\in X_{n}\colon x\alpha=x\}|\) and \(w(\alpha) =\max(\operatorname{Im}\alpha) \). In this note, we obtain formulae involving binomial coefficients of \(F(n;p,m,k)=|\{\alpha\in\mathcal{I}_{n}\colon h(\alpha)=p\wedge f(\alpha)=m\wedge w(\alpha)=k\}|\) and \(F(n;\cdot,m,k)=|\{\alpha\in\mathcal{I}_{n}\colon f(\alpha)=m\wedge w(\alpha)=k\}|\) and analogous results on the set of partial derangements of \(\mathcal{I}_{n}\). Lugansk National Taras Shevchenko University 2022-10-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1793 10.12958/adm1793 Algebra and Discrete Mathematics; Vol 33, No 2 (2022) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1793/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1793/854 Copyright (c) 2022 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2022-10-14T16:01:17Z
collection OJS
language English
topic partial one-to-one transformation
symmetric inverse monoid
height of \(\alpha\)
fix of \(\alpha\)
(left) waist of \(\alpha\)
permutation
(partial) derangement
20M18
20M20
05A10
05A15
spellingShingle partial one-to-one transformation
symmetric inverse monoid
height of \(\alpha\)
fix of \(\alpha\)
(left) waist of \(\alpha\)
permutation
(partial) derangement
20M18
20M20
05A10
05A15
Laradji, A.
Umar, A.
Further combinatorial results for the symmetric inverse monoid
topic_facet partial one-to-one transformation
symmetric inverse monoid
height of \(\alpha\)
fix of \(\alpha\)
(left) waist of \(\alpha\)
permutation
(partial) derangement
20M18
20M20
05A10
05A15
format Article
author Laradji, A.
Umar, A.
author_facet Laradji, A.
Umar, A.
author_sort Laradji, A.
title Further combinatorial results for the symmetric inverse monoid
title_short Further combinatorial results for the symmetric inverse monoid
title_full Further combinatorial results for the symmetric inverse monoid
title_fullStr Further combinatorial results for the symmetric inverse monoid
title_full_unstemmed Further combinatorial results for the symmetric inverse monoid
title_sort further combinatorial results for the symmetric inverse monoid
description Let \(\mathcal{I}_{n}\) be the set of partial one-to-one transformations on the chain \(X_{n}=\{1,2,\dots,n\}\) and, for each \(\alpha\) in \(\mathcal{I}_{n}\), let \(h(\alpha)=|\operatorname{Im}\alpha|\), \(f(\alpha)=|\{x\in X_{n}\colon x\alpha=x\}|\) and \(w(\alpha) =\max(\operatorname{Im}\alpha) \). In this note, we obtain formulae involving binomial coefficients of \(F(n;p,m,k)=|\{\alpha\in\mathcal{I}_{n}\colon h(\alpha)=p\wedge f(\alpha)=m\wedge w(\alpha)=k\}|\) and \(F(n;\cdot,m,k)=|\{\alpha\in\mathcal{I}_{n}\colon f(\alpha)=m\wedge w(\alpha)=k\}|\) and analogous results on the set of partial derangements of \(\mathcal{I}_{n}\).
publisher Lugansk National Taras Shevchenko University
publishDate 2022
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1793
work_keys_str_mv AT laradjia furthercombinatorialresultsforthesymmetricinversemonoid
AT umara furthercombinatorialresultsforthesymmetricinversemonoid
first_indexed 2025-12-02T15:30:33Z
last_indexed 2025-12-02T15:30:33Z
_version_ 1850412216370593792