A way of computing the Hilbert series
Let \(S=K[x_1,x_2,\ldots,x_n]\) be a standard graded \(K\)-algebra for any field \(K\). Without using any heavy tools of commutative algebra we compute the Hilbert series of graded \(S\)-module \(S/I,\) where \(I\) is a monomial ideal.
Gespeichert in:
| Datum: | 2018 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/183 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-183 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-1832018-05-17T07:54:05Z A way of computing the Hilbert series Haider, Azeem Monomial Ideals, Hilbert Series 13P10, 13F20, 68R05, 05E40 Let \(S=K[x_1,x_2,\ldots,x_n]\) be a standard graded \(K\)-algebra for any field \(K\). Without using any heavy tools of commutative algebra we compute the Hilbert series of graded \(S\)-module \(S/I,\) where \(I\) is a monomial ideal. Lugansk National Taras Shevchenko University 2018-04-27 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/183 Algebra and Discrete Mathematics; Vol 25, No 1 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/183/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/183/310 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-05-17T07:54:05Z |
| collection |
OJS |
| language |
English |
| topic |
Monomial Ideals Hilbert Series 13P10 13F20 68R05 05E40 |
| spellingShingle |
Monomial Ideals Hilbert Series 13P10 13F20 68R05 05E40 Haider, Azeem A way of computing the Hilbert series |
| topic_facet |
Monomial Ideals Hilbert Series 13P10 13F20 68R05 05E40 |
| format |
Article |
| author |
Haider, Azeem |
| author_facet |
Haider, Azeem |
| author_sort |
Haider, Azeem |
| title |
A way of computing the Hilbert series |
| title_short |
A way of computing the Hilbert series |
| title_full |
A way of computing the Hilbert series |
| title_fullStr |
A way of computing the Hilbert series |
| title_full_unstemmed |
A way of computing the Hilbert series |
| title_sort |
way of computing the hilbert series |
| description |
Let \(S=K[x_1,x_2,\ldots,x_n]\) be a standard graded \(K\)-algebra for any field \(K\). Without using any heavy tools of commutative algebra we compute the Hilbert series of graded \(S\)-module \(S/I,\) where \(I\) is a monomial ideal. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/183 |
| work_keys_str_mv |
AT haiderazeem awayofcomputingthehilbertseries AT haiderazeem wayofcomputingthehilbertseries |
| first_indexed |
2025-12-02T15:30:34Z |
| last_indexed |
2025-12-02T15:30:34Z |
| _version_ |
1850412055480238080 |